Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2021 | OriginalPaper | Chapter

SemAI: A Novel Approach for Achieving Enhanced Semantic Interoperability in Public Policies

Authors : George Manias, Argyro Mavrogiorgou, Athanasios Kiourtis, Dimosthenis Kyriazis

Published in: Artificial Intelligence Applications and Innovations

Publisher: Springer International Publishing

Abstract

One of the key elements in several application domains, such as policy making, addresses the scope of achieving and dealing with the very different formats, models and languages of data. The amount of data to be processed and analyzed in modern governments, organizations and businesses is staggering, thus Big Data analysis is the mean that helps organizations to harness their data and to identify new opportunities. Big Data are characterized by divergent data coming from various and heterogeneous sources and in different types, formats, and timeframes. Data interoperability addresses the ability of modern systems and mechanisms that create, exchange and consume data to have clear, shared expectations for the context, information and value of these divergent data. To this end, interoperability appears as the mean for accomplishing the interlinking of information, systems, applications and ways of working with the wealth of data. To address this challenge, in this paper a generalized and novel Enhanced Semantic Interoperability approach is proposed, the SemAI. This approach primarily focuses on the phases of the translation, the processing, the annotation, the mapping, as well as the transformation of the collected data, which have major impact on the successful aggregation, analysis, and exploitation of data across the whole policy making lifecycle. The presented prototype and its required subcomponents associated with this approach provide an example of the proposed hybrid and holistic mechanism, verifying its possible extensive application and adoption in various policy making scenarios.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Chavan, V., Phursule, R.N.: Survey paper on big data. Int. J. Comput. Sci. Inf. Technol 5(6), 7932–7939 (2014) Chavan, V., Phursule, R.N.: Survey paper on big data. Int. J. Comput. Sci. Inf. Technol 5(6), 7932–7939 (2014)
3.
go back to reference Mosley, M., Brackett, M.H., Earley, S., Henderson, D.: DAMA Guide to the Data Management Body of Knowledge. Technics Publications (2010) Mosley, M., Brackett, M.H., Earley, S., Henderson, D.: DAMA Guide to the Data Management Body of Knowledge. Technics Publications (2010)
4.
go back to reference Motta, G., Puccinelli, R., Reggiani, L., Saccone, M.: Extracting value from grey literature: processes and technologies for aggregating and analyzing the hidden «big data» treasure of organizations. Grey J. 12(1), 15–25 (2016) Motta, G., Puccinelli, R., Reggiani, L., Saccone, M.: Extracting value from grey literature: processes and technologies for aggregating and analyzing the hidden «big data» treasure of organizations. Grey J. 12(1), 15–25 (2016)
5.
go back to reference Yaqoob, I., et al.: Big data: from beginning to future. Int. J. Inf. Manage. 36(6), 1231–1247 (2016) CrossRef Yaqoob, I., et al.: Big data: from beginning to future. Int. J. Inf. Manage. 36(6), 1231–1247 (2016) CrossRef
6.
go back to reference Bahja, M.: Natural language processing applications in business. In: E-Business. IntechOpen (2020) Bahja, M.: Natural language processing applications in business. In: E-Business. IntechOpen (2020)
7.
go back to reference Kao, A., Poteet, S.R.: Natural language processing and text mining. Springer Science & Business Media (2007) Kao, A., Poteet, S.R.: Natural language processing and text mining. Springer Science & Business Media (2007)
8.
go back to reference Zheng, S., Lu, J.J., Ghasemzadeh, N., Hayek, S.S., Quyyumi, A.A., Wang, F.: Effective information extraction framework for heterogeneous clinical reports using online machine learning and controlled vocabularies. JMIR Med. Inform. 5(2), e12 (2017) CrossRef Zheng, S., Lu, J.J., Ghasemzadeh, N., Hayek, S.S., Quyyumi, A.A., Wang, F.: Effective information extraction framework for heterogeneous clinical reports using online machine learning and controlled vocabularies. JMIR Med. Inform. 5(2), e12 (2017) CrossRef
9.
go back to reference Solanas, A., Patsakis, C., Conti, M., Vlachos, I.S., Ramos, V., Falcone, F., et al.: Smart health: a context-aware health paradigm within smart cities. IEEE Commun. Mag. 52(8), 74–81 (2014) CrossRef Solanas, A., Patsakis, C., Conti, M., Vlachos, I.S., Ramos, V., Falcone, F., et al.: Smart health: a context-aware health paradigm within smart cities. IEEE Commun. Mag. 52(8), 74–81 (2014) CrossRef
13.
go back to reference Colpaert, P., Van Compernolle, M., De. Vocht, L., Dimou, A., Vander Sande, M., Verborgh, R., et al.: Quantifying the interoperability of open government datasets. Computer 47(10), 50–56 (2014) CrossRef Colpaert, P., Van Compernolle, M., De. Vocht, L., Dimou, A., Vander Sande, M., Verborgh, R., et al.: Quantifying the interoperability of open government datasets. Computer 47(10), 50–56 (2014) CrossRef
14.
go back to reference Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the internet of things: an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 111–124 (2017) CrossRef Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the internet of things: an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 111–124 (2017) CrossRef
15.
go back to reference Bajaj, G., Agarwal, R., Singh, P., Georgantas, N., Issarny, V. A study of existing ontologies in the IoT-domain. arXiv preprint arXiv:​1707.​00112 (2017) Bajaj, G., Agarwal, R., Singh, P., Georgantas, N., Issarny, V. A study of existing ontologies in the IoT-domain. arXiv preprint arXiv:​1707.​00112 (2017)
16.
go back to reference Ullah, F., Habib, M.A., Farhan, M., Khalid, S., Durrani, M.Y., Jabbar, S.: Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Urban Areas 34, 90–96 (2017) Ullah, F., Habib, M.A., Farhan, M., Khalid, S., Durrani, M.Y., Jabbar, S.: Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Urban Areas 34, 90–96 (2017)
17.
go back to reference Xin, J., et al.: Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration. BMC Bioinform. 19(1), 1–7 (2018) CrossRef Xin, J., et al.: Cross-linking BioThings APIs through JSON-LD to facilitate knowledge exploration. BMC Bioinform. 19(1), 1–7 (2018) CrossRef
18.
go back to reference Fernandez, R.C., et al: Seeping semantics: linking datasets using word embeddings for data discovery. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 989–1000. IEEE (2018) Fernandez, R.C., et al: Seeping semantics: linking datasets using word embeddings for data discovery. In: 2018 IEEE 34th International Conference on Data Engineering (ICDE), pp. 989–1000. IEEE (2018)
19.
go back to reference Kiourtis, A., Mavrogiorgou, A., Menychtas, A., Maglogiannis, I., Kyriazis, D.: Structurally mapping healthcare data to HL7 FHIR through ontology alignment. J. Med. Syst. 43(3), 62 (2019) CrossRef Kiourtis, A., Mavrogiorgou, A., Menychtas, A., Maglogiannis, I., Kyriazis, D.: Structurally mapping healthcare data to HL7 FHIR through ontology alignment. J. Med. Syst. 43(3), 62 (2019) CrossRef
21.
go back to reference Bulut, Y.E.: AI for Data Science: Artificial Intelligence Frameworks and Functionality for DEEP Learning, Optimization, and Beyond. Technics Publications (2018) Bulut, Y.E.: AI for Data Science: Artificial Intelligence Frameworks and Functionality for DEEP Learning, Optimization, and Beyond. Technics Publications (2018)
22.
go back to reference Tiwari, G., Sharma, A., Sahotra, A., Kapoor, R.: English-Hindi neural machine translation-LSTM Seq2Seq and ConvS2S. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 871–875. IEEE (2020) Tiwari, G., Sharma, A., Sahotra, A., Kapoor, R.: English-Hindi neural machine translation-LSTM Seq2Seq and ConvS2S. In: 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 871–875. IEEE (2020)
23.
go back to reference Yang, M., Liu, S., Chen, K., Zhang, H., Zhao, E., Zhao, T.: A hierarchical clustering approach to fuzzy semantic representation of rare words in neural machine translation. IEEE Trans. Fuzzy Syst. 28(5), 992–1002 (2020) CrossRef Yang, M., Liu, S., Chen, K., Zhang, H., Zhao, E., Zhao, T.: A hierarchical clustering approach to fuzzy semantic representation of rare words in neural machine translation. IEEE Trans. Fuzzy Syst. 28(5), 992–1002 (2020) CrossRef
24.
go back to reference Bahar, P., Makarov, N., Ney, H.: Investigation of transformer-based latent attention models for neural machine translation. In: Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (AMTA 2020), pp. 7–20 (2020) Bahar, P., Makarov, N., Ney, H.: Investigation of transformer-based latent attention models for neural machine translation. In: Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (AMTA 2020), pp. 7–20 (2020)
25.
go back to reference Pramodya, A., Pushpananda, R., Weerasinghe, R.: a comparison of transformer, recurrent neural networks and SMT in Tamil to Sinhala MT. In: 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 155–160. IEEE (2020) Pramodya, A., Pushpananda, R., Weerasinghe, R.: a comparison of transformer, recurrent neural networks and SMT in Tamil to Sinhala MT. In: 2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer), pp. 155–160. IEEE (2020)
26.
go back to reference Lakew, S.M., Cettolo, M., Federico, M.: A comparison of transformer and recurrent neural networks on multilingual neural machine translation. arXiv preprint arXiv:​1806.​06957 (2018) Lakew, S.M., Cettolo, M., Federico, M.: A comparison of transformer and recurrent neural networks on multilingual neural machine translation. arXiv preprint arXiv:​1806.​06957 (2018)
Metadata
Title
SemAI: A Novel Approach for Achieving Enhanced Semantic Interoperability in Public Policies
Authors
George Manias
Argyro Mavrogiorgou
Athanasios Kiourtis
Dimosthenis Kyriazis
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-79150-6_54

Premium Partner