Skip to main content
Top

2020 | OriginalPaper | Chapter

Semantic Concept Detection for Multilabel Unbalanced Dataset Using Global Features

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Digital evolution in capturing video, advances in compression technology and internet leads to availability of large videos on the web. There is growing need for efficiently retrieving relevant videos. Semantic Concept detection assigns multiple labels to segmented shots or entire video which facilitates many applications like multimedia indexing and retrieval. This paper presents the semantic concept detector architecture for unbalanced dataset which assigns multiple labels with probability to input video. The proposed architecture uses visual features extracted on global scale. The unbalanced dataset problem is handled by partitioning dataset into segments further evaluating classifiers on these dataset. Feature fusion and decision fusion is evaluated using machine learning algorithm for all segments. Performance of the concept detection architecture for above fusion methods are reported with Mean Average Precision. The proposed method for multilabel concept detection is evaluated on TRECVID 2007 dataset and performance is better than existing early and late fusion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149(PB), 736–751 (2014) Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149(PB), 736–751 (2014)
2.
go back to reference Le, D., Satoh, S.: A comprehensive study of features representations for semantic concept detection. In: IEEE Fifth International Conference on Semnatic Computing (2011) Le, D., Satoh, S.: A comprehensive study of features representations for semantic concept detection. In: IEEE Fifth International Conference on Semnatic Computing (2011)
3.
go back to reference Muhling, M., Ewerth, R., Zhou, J., Freisleben, B.: Multimodal video concept detection via bag of auditory words and multiple kernel learnin. LNCS, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7131, pp. 40–50 (2012) Muhling, M., Ewerth, R., Zhou, J., Freisleben, B.: Multimodal video concept detection via bag of auditory words and multiple kernel learnin. LNCS, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7131, pp. 40–50 (2012)
4.
go back to reference Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion for multimedia analysis: a survey. Multimed. Syst. 16(6), 345–379 (2010)CrossRef Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion for multimedia analysis: a survey. Multimed. Syst. 16(6), 345–379 (2010)CrossRef
5.
go back to reference Snoek, C.G.M., Worring, M., Smeulders, A.W.M.: Early versus late fusion in semantic video analysis. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, p. 399, January 2005 Snoek, C.G.M., Worring, M., Smeulders, A.W.M.: Early versus late fusion in semantic video analysis. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, p. 399, January 2005
6.
go back to reference Zha, Z., Liu, Y., Mei, T., Hua, X.: Video concept detection using support vector machines - TRECVID 2007 evaluations (2007) Zha, Z., Liu, Y., Mei, T., Hua, X.: Video concept detection using support vector machines - TRECVID 2007 evaluations (2007)
7.
go back to reference Liu, N., et al.: Multimodal recognition of visual concepts using histograms of textual concepts and selective weighted late fusion scheme. Comput. Vis. Image Underst. 117(5), 493–512 (2013)CrossRef Liu, N., et al.: Multimodal recognition of visual concepts using histograms of textual concepts and selective weighted late fusion scheme. Comput. Vis. Image Underst. 117(5), 493–512 (2013)CrossRef
8.
go back to reference Cao, L., et al.: Multimedia Event Detection (MED) System, no. 4 (2011) Cao, L., et al.: Multimedia Event Detection (MED) System, no. 4 (2011)
9.
go back to reference Van Hout, J., et al.: Late fusion and calibration for multimedia event detection using few examples. International, Menlo Park, USA University of Amsterdam, The Netherlands University of Southern California, Los Angeles, USA, pp. 4631–4635 (2014) Van Hout, J., et al.: Late fusion and calibration for multimedia event detection using few examples. International, Menlo Park, USA University of Amsterdam, The Netherlands University of Southern California, Los Angeles, USA, pp. 4631–4635 (2014)
10.
go back to reference Lan, Z., Bao, L., Yu, S., Liu, W., Hauptmann, A.G.: Double fusion for multimedia event detection, pp. 173–185 (2012) Lan, Z., Bao, L., Yu, S., Liu, W., Hauptmann, A.G.: Double fusion for multimedia event detection, pp. 173–185 (2012)
11.
go back to reference Diou, C., Stephanopoulos, G., Panagiotopoulos, P., Papachristou, C., Dimitriou, N., Delopoulos, A.: Large-scale concept detection in multimedia data using small training sets and cross-domain concept fusion. IEEE Trans. Circ. Syst. Video Technol. 20(12), 1808–1821 (2010)CrossRef Diou, C., Stephanopoulos, G., Panagiotopoulos, P., Papachristou, C., Dimitriou, N., Delopoulos, A.: Large-scale concept detection in multimedia data using small training sets and cross-domain concept fusion. IEEE Trans. Circ. Syst. Video Technol. 20(12), 1808–1821 (2010)CrossRef
12.
go back to reference Strat, S.T., Benoit, A., Qu, G., Lambert, P.: Hierarchical late fusion for concept detection in videos. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) Computer Vision – ECCV (2012) Strat, S.T., Benoit, A., Qu, G., Lambert, P.: Hierarchical late fusion for concept detection in videos. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) Computer Vision – ECCV (2012)
13.
go back to reference Lv, G., Zheng, C.: A novel framework for concept detection on large scale video database and feature pool. Artif. Intell. Rev. 40(4), 391–403 (2013)CrossRef Lv, G., Zheng, C.: A novel framework for concept detection on large scale video database and feature pool. Artif. Intell. Rev. 40(4), 391–403 (2013)CrossRef
14.
go back to reference Janwe, N.J., Bhoyar, K.K.: Video shot boundary detection based on JND color histogram. In: 2013 IEEE Second International Conference on Image Information Process (ICIIP), pp. 476–480, December 2013 Janwe, N.J., Bhoyar, K.K.: Video shot boundary detection based on JND color histogram. In: 2013 IEEE Second International Conference on Image Information Process (ICIIP), pp. 476–480, December 2013
Metadata
Title
Semantic Concept Detection for Multilabel Unbalanced Dataset Using Global Features
Authors
Nita Patil
Sudhir Sawarkar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_23