Skip to main content
Top
Published in: Cellulose 4/2021

21-01-2021 | Original Research

Semi-automatic image analysis of particle morphology of cellulose nanocrystals

Authors: Sezen Yucel, Robert J. Moon, Linda J. Johnston, Berkay Yucel, Surya R. Kalidindi

Published in: Cellulose | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Morphology analysis of cellulose nanocrystals (CNCs) using transmission electron microscopy (TEM) and atomic force microscopy (AFM) images is an important step in the design and optimization of the processes employed in the manufacture and utilization of CNCs. Current protocols used in the analyses of CNC particle morphology for such microscopy images are largely manual and time-consuming, and often produce inconsistent results between different researchers. This paper describes a new semi-automated image analysis framework that can reliably and quickly detect and classify CNCs from TEM and AFM images and measure their dimensions. The proposed image analysis framework is named CNC-Standardized Morphology Analysis for Research and Technology (SMART). The viability of this framework is demonstrated in this paper using exemplar images obtained for a National Research Council Canada certified reference material, CNCD-1. The results obtained from the SMART approach presented in this work are compared critically against the results obtained from the conventional manual approaches. These comparisons revealed a good agreement between the manual and SMART approaches. Notably, the SMART approach showed significant potential for consistent CNC identification and dimensional measurements at a much higher throughput (e.g., number of CNCs measured and number of images analyzed) compared to the conventional manual approaches.

Graphic abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 377:297–303CrossRef Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Asp 377:297–303CrossRef
go back to reference Bradley D, Roth G (2007) Adaptive thresholding using the integral image. J Graph Tools 12:13–21CrossRef Bradley D, Roth G (2007) Adaptive thresholding using the integral image. J Graph Tools 12:13–21CrossRef
go back to reference Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114CrossRefPubMed Brinkmann A, Chen M, Couillard M, Jakubek ZJ, Leng T, Johnston LJ (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114CrossRefPubMed
go back to reference Campano C, Balea A, Blanco Á, Negro C (2020) A reproducible method to characterize the bulk morphology of cellulose nanocrystals and nanofibers by transmission electron microscopy. Cellulose 27:4871–4887CrossRef Campano C, Balea A, Blanco Á, Negro C (2020) A reproducible method to characterize the bulk morphology of cellulose nanocrystals and nanofibers by transmission electron microscopy. Cellulose 27:4871–4887CrossRef
go back to reference Canet-Ferrer J, Coronado E, Forment-Aliaga A, Pinilla-Cienfuegos E (2014) Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy. Nanotechnology 25:395703CrossRefPubMed Canet-Ferrer J, Coronado E, Forment-Aliaga A, Pinilla-Cienfuegos E (2014) Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy. Nanotechnology 25:395703CrossRefPubMed
go back to reference Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier, Amsterdam Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier, Amsterdam
go back to reference Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65CrossRef
go back to reference Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: Advances in barrier layer technologies. Ind Crops Prod 95:574–582CrossRef Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: Advances in barrier layer technologies. Ind Crops Prod 95:574–582CrossRef
go back to reference Foster EJ et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679CrossRefPubMed Foster EJ et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679CrossRefPubMed
go back to reference Goswami J, Haque E, Fox DM, Gilman JW, Holmes GA, Moon RJ, Kalaitzidou K (2019) The effect of cellulose nanocrystal coatings on the glass fiber–epoxy interphase. Materials 12:1951CrossRefPubMedCentral Goswami J, Haque E, Fox DM, Gilman JW, Holmes GA, Moon RJ, Kalaitzidou K (2019) The effect of cellulose nanocrystal coatings on the glass fiber–epoxy interphase. Materials 12:1951CrossRefPubMedCentral
go back to reference Honorato-Rios C, Lagerwall JP (2020) Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions. Commun Mater 1:1–11CrossRef Honorato-Rios C, Lagerwall JP (2020) Interrogating helical nanorod self-assembly with fractionated cellulose nanocrystal suspensions. Commun Mater 1:1–11CrossRef
go back to reference Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust 27:13–18CrossRef Huang T, Yang G, Tang G (1979) A fast two-dimensional median filtering algorithm. IEEE Trans Acoust 27:13–18CrossRef
go back to reference Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-hill, New York Jain R, Kasturi R, Schunck BG (1995) Machine vision. McGraw-hill, New York
go back to reference Kaushik M, Fraschini C, Chauve G, Putaux J-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope-theory and applications, INTECH. https://doi.org/10.5772/60985 Kaushik M, Fraschini C, Chauve G, Putaux J-L, Moores A (2015) Transmission electron microscopy for the characterization of cellulose nanocrystals. In: Maaz K (ed) The transmission electron microscope-theory and applications, INTECH. https://​doi.​org/​10.​5772/​60985
go back to reference Li M-C, Wu Q, Song K, De Hoop CF, Lee S, Qing Y, Wu Y (2016) Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind Eng Chem Res 55:133–143CrossRef Li M-C, Wu Q, Song K, De Hoop CF, Lee S, Qing Y, Wu Y (2016) Cellulose nanocrystals and polyanionic cellulose as additives in bentonite water-based drilling fluids: rheological modeling and filtration mechanisms. Ind Eng Chem Res 55:133–143CrossRef
go back to reference Mao Y, Liu K, Zhan C, Geng L, Chu B, Hsiao BS (2017) Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B 121:1340–1351CrossRefPubMed Mao Y, Liu K, Zhan C, Geng L, Chu B, Hsiao BS (2017) Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J Phys Chem B 121:1340–1351CrossRefPubMed
go back to reference Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082CrossRefPubMed Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082CrossRefPubMed
go back to reference Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
go back to reference Mukherjee A, Hackley VA (2018) Separation and characterization of cellulose nanocrystals by multi-detector asymmetrical-flow field-flow fractionation. Analyst 143:731–740CrossRefPubMedPubMedCentral Mukherjee A, Hackley VA (2018) Separation and characterization of cellulose nanocrystals by multi-detector asymmetrical-flow field-flow fractionation. Analyst 143:731–740CrossRefPubMedPubMedCentral
go back to reference Ogawa Y, Putaux J-L (2019) Transmission electron microscopy of cellulose. Part 2: technical and practical aspects. Cellulose 26:17–34CrossRef Ogawa Y, Putaux J-L (2019) Transmission electron microscopy of cellulose. Part 2: technical and practical aspects. Cellulose 26:17–34CrossRef
go back to reference Postek MT et al (2010) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005CrossRef Postek MT et al (2010) Development of the metrology and imaging of cellulose nanocrystals. Meas Sci Technol 22:024005CrossRef
go back to reference Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598CrossRefPubMed Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598CrossRefPubMed
go back to reference Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed Sacui IA et al (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6:6127–6138CrossRefPubMed
go back to reference Sokolov P, Belousov M, Bondarev SA, Zhouravleva GA, Kasyanenko N (2017) FibrilJ: ImageJ plugin for fibrils’ diameter and persistence length determination. Comput Phys Commun 214:199–206CrossRef Sokolov P, Belousov M, Bondarev SA, Zhouravleva GA, Kasyanenko N (2017) FibrilJ: ImageJ plugin for fibrils’ diameter and persistence length determination. Comput Phys Commun 214:199–206CrossRef
go back to reference Stinson-Bagby KL, Roberts R, Foster EJ (2018) Effective cellulose nanocrystal imaging using transmission electron microscopy. Carbohydr Polym 186:429–438CrossRefPubMed Stinson-Bagby KL, Roberts R, Foster EJ (2018) Effective cellulose nanocrystal imaging using transmission electron microscopy. Carbohydr Polym 186:429–438CrossRefPubMed
go back to reference Valentini L, Bon SB, Cardinali M, Fortunati E, Kenny JM (2014) Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Mater Lett 126:55–58CrossRef Valentini L, Bon SB, Cardinali M, Fortunati E, Kenny JM (2014) Cellulose nanocrystals thin films as gate dielectric for flexible organic field-effect transistors. Mater Lett 126:55–58CrossRef
go back to reference Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013a) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854CrossRefPubMed Zhou C, Shi Q, Guo W, Terrell L, Qureshi AT, Hayes DJ, Wu Q (2013a) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854CrossRefPubMed
go back to reference Zhou Y et al (2013b) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1–5 Zhou Y et al (2013b) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1–5
Metadata
Title
Semi-automatic image analysis of particle morphology of cellulose nanocrystals
Authors
Sezen Yucel
Robert J. Moon
Linda J. Johnston
Berkay Yucel
Surya R. Kalidindi
Publication date
21-01-2021
Publisher
Springer Netherlands
Published in
Cellulose / Issue 4/2021
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03668-8

Other articles of this Issue 4/2021

Cellulose 4/2021 Go to the issue