Skip to main content
Top

2019 | OriginalPaper | Chapter

4. Semi-empirical Model of Strong Evaporation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Knowledge of laws of strong evaporation is instrumental for the solution of a number of applied problems: the effect of laser radiation on materials [1], calculation of the parameters of discharge into vacuum of a flashing coolant [2], etc. Strong evaporation also plays an important role in the fundamental problem of simulation of the inner cometary atmosphere. According to the modern view [3], the intensity of icy cometary nucleus varies, as a function of the distance to Sun, in a very substantial range and may reach very large values.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
For a gas discharge to the region of reduced pressure, the discontinuity surface is front of a rarefaction shock.
 
2
Strictly speaking, physically sensible on the CPS are the temperature \(T_{w}\) and density \(\rho_{w}\). The pressure \(p_{w}\) and velocity \(u_{w}\) are reference values.
 
Literature
1.
go back to reference Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14(12):4242–4255MathSciNetCrossRef Gusarov AV, Smurov I (2002) Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer. Phys Fluids 14(12):4242–4255MathSciNetCrossRef
2.
go back to reference Larina IN, Rykov VA, Shakhov EM (1996) Evaporation from a surface and vapor flow through a plane channel into a vacuum. Fluid Dyn 31(1):127–133CrossRef Larina IN, Rykov VA, Shakhov EM (1996) Evaporation from a surface and vapor flow through a plane channel into a vacuum. Fluid Dyn 31(1):127–133CrossRef
3.
go back to reference Crifo JF (1994) Elements of cometary aeronomy. Curr Sci 66(7–8):583–602 Crifo JF (1994) Elements of cometary aeronomy. Curr Sci 66(7–8):583–602
4.
go back to reference Kogan MN (1995) Rarefied gas dynamics. Springer, Berlin Kogan MN (1995) Rarefied gas dynamics. Springer, Berlin
5.
go back to reference Bobylev AV (1984) Exact solutions of the nonlinear Boltzmann equation and of its models. Fluid Mech. Soviet Res. 13(4):105–110MathSciNet Bobylev AV (1984) Exact solutions of the nonlinear Boltzmann equation and of its models. Fluid Mech. Soviet Res. 13(4):105–110MathSciNet
6.
go back to reference Labuntsov DA (1967) An analysis of the processes of evaporation and condensation. High Temp 5(4):579–647 Labuntsov DA (1967) An analysis of the processes of evaporation and condensation. High Temp 5(4):579–647
7.
go back to reference Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967 Muratova TM, Labuntsov DA (1969) Kinetic analysis of the processes of evaporation and condensation. High Temp 7(5):959–967
8.
go back to reference Latyshev AV, Yushkanov AA (2008) Analytical methods in kinetic theory methods in kinetic theory. MGOU, Moscow (in Russian) Latyshev AV, Yushkanov AA (2008) Analytical methods in kinetic theory methods in kinetic theory. MGOU, Moscow (in Russian)
9.
go back to reference Frezzotti AA (2007) A numerical investigation of the steady evaporation of a polyatomic gas. Eur J Mech B Fluids 26:93–104MathSciNetCrossRef Frezzotti AA (2007) A numerical investigation of the steady evaporation of a polyatomic gas. Eur J Mech B Fluids 26:93–104MathSciNetCrossRef
10.
go back to reference Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183 Anisimov SI (1968) Vaporization of metal absorbing laser radiation. Sov Phys JETP 27(1):182–183
11.
go back to reference Labuntsov DA, Kryukov AP (1977) Intense evaporation processes. Therm Eng 4:8–11 Labuntsov DA, Kryukov AP (1977) Intense evaporation processes. Therm Eng 4:8–11
12.
go back to reference Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 2:989–1002CrossRef Labuntsov DA, Kryukov AP (1979) Analysis of intensive evaporation and condensation. Int J Heat Mass Transf 2:989–1002CrossRef
13.
go back to reference Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022CrossRef Zudin YB (2015) Approximate kinetic analysis of intense evaporation. J Eng Phys Thermophys 88(4):1015–1022CrossRef
14.
go back to reference Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84CrossRef Zudin YB (2015) The approximate kinetic analysis of strong condensation. Thermophys Aeromech 22(1):73–84CrossRef
15.
go back to reference Zudin YB (2016) Linear kinetic analysis of evaporation and condensation. Thermophys Aeromech 23(3):437–449CrossRef Zudin YB (2016) Linear kinetic analysis of evaporation and condensation. Thermophys Aeromech 23(3):437–449CrossRef
16.
go back to reference Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875CrossRef Rose JW (2000) Accurate approximate equations for intensive sub-sonic evaporation. Int J Heat Mass Transf 43:3869–3875CrossRef
17.
go back to reference Crout PD (1936) An application of kinetic theory to the problems of evaporation and sublimation of monatomic gases. J Math Phys 15:1–54CrossRef Crout PD (1936) An application of kinetic theory to the problems of evaporation and sublimation of monatomic gases. J Math Phys 15:1–54CrossRef
18.
go back to reference Zeldovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation Zeldovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Courier Corporation
19.
go back to reference Kryukov AP, Levashov VY, Pavlyukevich NV (2014) Condensation coefficient: definitions, estimations, modern experimental and calculation data. J Eng Phys Thermophys 87(1):237–245CrossRef Kryukov AP, Levashov VY, Pavlyukevich NV (2014) Condensation coefficient: definitions, estimations, modern experimental and calculation data. J Eng Phys Thermophys 87(1):237–245CrossRef
20.
go back to reference Cercignani C (1981) Strong evaporation of a polyatomic gas. In: Rarefied gas dynamics, international symposium, 12th, Charlottesville, VA, July. 7–11, 1980, Technical Papers. Part 1, American Institute of Aeronautics and Astronautics, New York, 1981, pp 305–320 Cercignani C (1981) Strong evaporation of a polyatomic gas. In: Rarefied gas dynamics, international symposium, 12th, Charlottesville, VA, July. 7–11, 1980, Technical Papers. Part 1, American Institute of Aeronautics and Astronautics, New York, 1981, pp 305–320
21.
go back to reference Skovorodko PA (2000) Semi-empirical boundary conditions for strong evaporation of a polyatomic gas. In: Bartel T, Gallis M (eds) Rarefied gas dynamics, 22th international symposium, Sydney, Australia, 9–14 July 2000. In: AIP conference proceedings 585, American Institute of Physics, Melville, NY. 2001, pp 588–590 Skovorodko PA (2000) Semi-empirical boundary conditions for strong evaporation of a polyatomic gas. In: Bartel T, Gallis M (eds) Rarefied gas dynamics, 22th international symposium, Sydney, Australia, 9–14 July 2000. In: AIP conference proceedings 585, American Institute of Physics, Melville, NY. 2001, pp 588–590
22.
go back to reference Sone Y, Sugimoto H (1993) Kinetic theory analysis of steady evaporating flows from a spherical condensed phase into a vacuum. Phys Fluids A 5:1491–1511CrossRef Sone Y, Sugimoto H (1993) Kinetic theory analysis of steady evaporating flows from a spherical condensed phase into a vacuum. Phys Fluids A 5:1491–1511CrossRef
23.
go back to reference Mazhukin VI, Prudkovskii PA, Samokhin AA (1993) About gas-dynamical boundary conditions on evaporation front. Matematicheskoe modelirovanie 5(6):3–10 (in Russian)MathSciNetMATH Mazhukin VI, Prudkovskii PA, Samokhin AA (1993) About gas-dynamical boundary conditions on evaporation front. Matematicheskoe modelirovanie 5(6):3–10 (in Russian)MathSciNetMATH
Metadata
Title
Semi-empirical Model of Strong Evaporation
Author
Yuri B. Zudin
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-13815-8_4

Premium Partners