Skip to main content
Top

2023 | OriginalPaper | Chapter

Semi-supervised Deep Learning-Driven Anomaly Detection Schemes for Cyber-Attack Detection in Smart Grids

Authors : Abdelkader Dairi, Fouzi Harrou, Benamar Bouyeddou, Sidi-Mohammed Senouci, Ying Sun

Published in: Power Systems Cybersecurity

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Modern power systems are continuously exposed to malicious cyber-attacks. Analyzing industrial control system (ICS) traffic data plays a central role in detecting and defending against cyber-attacks. Detection approaches based on system modeling require effectively modeling the complex behavior of the critical infrastructures, which remains a challenge, especially for large-scale systems. Alternatively, data-driven approaches which rely on data collected from the inspected system have become appealing due to the availability of big data that supports machine learning methods to achieve outstanding performance. This chapter presents an enhanced cyber-attack detection strategy using unlabeled data for ICS traffic monitoring and detecting suspicious data transmissions. Importantly, we designed two semi-supervised hybrid deep learning-based anomaly detection methods for intrusion detection in ICS traffic of smart grid. The first approach is a Gated recurrent unit (GRU)-based stacked autoencoder (AE-GRU), and the second is constructed using a generative adversarial network (GAN) model with a recurrent neural network (RNN) for both generator and discriminator that we called GAN-RNN. The employment of GRU and RNN in AE and GAN models is expected to improve the ability of these models to learn the temporal dependencies of multivariate data. These models are used for feature extraction and anomaly detection methods (Isolation forest, Local outlier factor, One-Class SVM, and Elliptical Envelope) for cyber-attack in power systems. These approaches only employ normal events data for training without labeled attack types, making them more attractive for detecting cyber-attack in practice. The detection performance of these approaches is demonstrated on IEC 60870-5-104 (aka IEC 104) control communication that is often utilized for substation control in smart grids. Results showed that GAN-GRU and AE-GRU-based LOF methods achieved enhanced detection with an averaged F1-score of 0.98, among others.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W. Wang, Z. Lu, Cyber security in the smart grid: survey and challenges. Comput. Netw. 57(5), 1344–1371 (2013)CrossRef W. Wang, Z. Lu, Cyber security in the smart grid: survey and challenges. Comput. Netw. 57(5), 1344–1371 (2013)CrossRef
2.
go back to reference M.Z. Gunduz, R. Das, Cyber-security on smart grid: threats and potential solutions. Comput. Netw. 169, 107094 (2020)CrossRef M.Z. Gunduz, R. Das, Cyber-security on smart grid: threats and potential solutions. Comput. Netw. 169, 107094 (2020)CrossRef
3.
go back to reference R. Leszczyna, A review of standards with cybersecurity requirements for smart grid. Comput. Secur. 77, 262–276 (2018)CrossRef R. Leszczyna, A review of standards with cybersecurity requirements for smart grid. Comput. Secur. 77, 262–276 (2018)CrossRef
4.
go back to reference R.K. Pandey, M. Misra, Cyber security threats-smart grid infrastructure, in National Power Systems Conference (NPSC), vol. 2016 (IEEE, 2016), pp. 1–6 R.K. Pandey, M. Misra, Cyber security threats-smart grid infrastructure, in National Power Systems Conference (NPSC), vol. 2016 (IEEE, 2016), pp. 1–6
5.
go back to reference A. Teymouri, A. Mehrizi-Sani, C.-C. Liu, Cyber security risk assessment of solar pv units with reactive power capability, in IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (IEEE, 2018), pp. 2872–2877 A. Teymouri, A. Mehrizi-Sani, C.-C. Liu, Cyber security risk assessment of solar pv units with reactive power capability, in IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society (IEEE, 2018), pp. 2872–2877
6.
go back to reference W. Wang, F. Harrou, B. Bouyeddou, S.-M. Senouci, Y. Sun, A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas pipeline systems. Clust. Comput. 25(1), 561–578 (2022)CrossRef W. Wang, F. Harrou, B. Bouyeddou, S.-M. Senouci, Y. Sun, A stacked deep learning approach to cyber-attacks detection in industrial systems: application to power system and gas pipeline systems. Clust. Comput. 25(1), 561–578 (2022)CrossRef
7.
go back to reference M. Stănculescu, S. Deleanu, P.C. Andrei, H. Andrei, A case study of an industrial power plant under cyberattack: simulation and analysis. Energies 14(9), 2568 (2021)CrossRef M. Stănculescu, S. Deleanu, P.C. Andrei, H. Andrei, A case study of an industrial power plant under cyberattack: simulation and analysis. Energies 14(9), 2568 (2021)CrossRef
8.
go back to reference A.A.Z. Khan, G. Serpen, Intrusion detection and identification system design and performance evaluation for industrial scada networks (2020), arXiv preprint arXiv:2012.09707 A.A.Z. Khan, G. Serpen, Intrusion detection and identification system design and performance evaluation for industrial scada networks (2020), arXiv preprint arXiv:​2012.​09707
9.
go back to reference J.R. Vacca, Cyber Security and IT Infrastructure Protection. Syngress (2013) J.R. Vacca, Cyber Security and IT Infrastructure Protection. Syngress (2013)
10.
go back to reference M. Touhiduzzaman, S.N.G. Gourisetti, C. Eppinger, A. Somani, A review of cybersecurity risk and consequences for critical infrastructure. 2019 Resilience Week (RWS) 1, 7–13 (2019) M. Touhiduzzaman, S.N.G. Gourisetti, C. Eppinger, A. Somani, A review of cybersecurity risk and consequences for critical infrastructure. 2019 Resilience Week (RWS) 1, 7–13 (2019)
11.
go back to reference J. Jiang, X. Zhao, S. Wallace, E. Cotilla-Sanchez, R. Bass, Mining pmu data streams to improve electric power system resilience, in Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (2017), pp. 95–102 J. Jiang, X. Zhao, S. Wallace, E. Cotilla-Sanchez, R. Bass, Mining pmu data streams to improve electric power system resilience, in Proceedings of the Fourth IEEE/ACM International Conference on Big Data Computing, Applications and Technologies (2017), pp. 95–102
12.
go back to reference C. Konstantinou, M. Sazos, M. Maniatakos, Attacking the smart grid using public information, in 17th Latin-American Test Symposium (LATS), vol. 2016. (IEEE, 2016), pp. 105–110 C. Konstantinou, M. Sazos, M. Maniatakos, Attacking the smart grid using public information, in 17th Latin-American Test Symposium (LATS), vol. 2016. (IEEE, 2016), pp. 105–110
13.
go back to reference S. Basumallik, R. Ma, S. Eftekharnejad, Packet-data anomaly detection in pmu-based state estimator using convolutional neural network. Int. J. Electrical Power Energy Syst. 107, 690–702 (2019)CrossRef S. Basumallik, R. Ma, S. Eftekharnejad, Packet-data anomaly detection in pmu-based state estimator using convolutional neural network. Int. J. Electrical Power Energy Syst. 107, 690–702 (2019)CrossRef
14.
go back to reference W. Wang, F. Harrou, B. Bouyeddou, S.-M. Senouci, Y. Sun, Cyber-attacks detection in industrial systems using artificial intelligence-driven methods. Int. J. Critic. Infrastruct. Protect. 100542 (2022) W. Wang, F. Harrou, B. Bouyeddou, S.-M. Senouci, Y. Sun, Cyber-attacks detection in industrial systems using artificial intelligence-driven methods. Int. J. Critic. Infrastruct. Protect. 100542 (2022)
15.
go back to reference A. Walker, J. Desai, D. Saleem, T. Gunda, Cybersecurity in Photovoltaic Plant Operations, National Renewable Energy Lab (NREL), Golden, CO (United States), Technical Report, 2021)CrossRef A. Walker, J. Desai, D. Saleem, T. Gunda, Cybersecurity in Photovoltaic Plant Operations, National Renewable Energy Lab (NREL), Golden, CO (United States), Technical Report, 2021)CrossRef
16.
go back to reference J. Ye, A. Giani, A. Elasser, S.K. Mazumder, C. Farnell, H.A. Mantooth, T. Kim, J. Liu, B. Chen, G.-S. Seo et al., A review of cyber-physical security for photovoltaic systems (IEEE J. Emerg. Select, Topics Power Electron, 2021) J. Ye, A. Giani, A. Elasser, S.K. Mazumder, C. Farnell, H.A. Mantooth, T. Kim, J. Liu, B. Chen, G.-S. Seo et al., A review of cyber-physical security for photovoltaic systems (IEEE J. Emerg. Select, Topics Power Electron, 2021)
17.
go back to reference C.-C. Sun, A. Hahn, C.-C. Liu, Cyber security of a power grid: state-of-the-art. Int. J. Electr. Power Energy Syst. 99, 45–56 (2018)CrossRef C.-C. Sun, A. Hahn, C.-C. Liu, Cyber security of a power grid: state-of-the-art. Int. J. Electr. Power Energy Syst. 99, 45–56 (2018)CrossRef
18.
go back to reference Z. El Mrabet, N. Kaabouch, H. El Ghazi, H. El Ghazi, Cyber-security in smart grid: survey and challenges. Comput. Electr. Eng. 67, 469–482 (2018)CrossRef Z. El Mrabet, N. Kaabouch, H. El Ghazi, H. El Ghazi, Cyber-security in smart grid: survey and challenges. Comput. Electr. Eng. 67, 469–482 (2018)CrossRef
19.
go back to reference F. Nejabatkhah, Y.W. Li, H. Liang, and R. Reza Ahrabi, Cyber-security of smart microgrids: a survey. Energies 14(1), 27 (2020) F. Nejabatkhah, Y.W. Li, H. Liang, and R. Reza Ahrabi, Cyber-security of smart microgrids: a survey. Energies 14(1), 27 (2020)
20.
go back to reference Y. Zhang, L. Wang, Z. Liu, W. Wei, A cyber-insurance scheme for water distribution systems considering malicious cyberattacks. IEEE Trans. Inf. Forens. Secur. 16, 1855–1867 (2020)CrossRef Y. Zhang, L. Wang, Z. Liu, W. Wei, A cyber-insurance scheme for water distribution systems considering malicious cyberattacks. IEEE Trans. Inf. Forens. Secur. 16, 1855–1867 (2020)CrossRef
21.
go back to reference A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar, K. Poolla, Smart grid data integrity attacks: characterizations and countermeasures \(\pi \), in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm) (IEEE, 2011), pp. 232–237 A. Giani, E. Bitar, M. Garcia, M. McQueen, P. Khargonekar, K. Poolla, Smart grid data integrity attacks: characterizations and countermeasures \(\pi \), in 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm) (IEEE, 2011), pp. 232–237
22.
go back to reference D. An, Q. Yang, W. Liu, Y. Zhang, Defending against data integrity attacks in smart grid: A deep reinforcement learning-based approach. IEEE Access 7, 110 835–110 845 (2019) D. An, Q. Yang, W. Liu, Y. Zhang, Defending against data integrity attacks in smart grid: A deep reinforcement learning-based approach. IEEE Access 7, 110 835–110 845 (2019)
23.
go back to reference P. Srikantha, D. Kundur, Denial of service attacks and mitigation for stability in cyber-enabled power grid, in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), vol. 2015 (IEEE, 2015), pp. 1–5 P. Srikantha, D. Kundur, Denial of service attacks and mitigation for stability in cyber-enabled power grid, in IEEE Power and Energy Society Innovative Smart Grid Technologies Conference (ISGT), vol. 2015 (IEEE, 2015), pp. 1–5
24.
go back to reference M.Z. Gunduz, R. Das, Analysis of cyber-attacks on smart grid applications, in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (IEEE, 2018), pp. 1–5 M.Z. Gunduz, R. Das, Analysis of cyber-attacks on smart grid applications, in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (IEEE, 2018), pp. 1–5
25.
go back to reference A. Huseinovic, S. Mrdovic, K. Bicakci, S. Uludag, A taxonomy of the emerging denial-of-service attacks in the smart grid and countermeasures, in 26th Telecommunications Forum (TELFOR), vol. 2018 (IEEE, 2018), pp. 1–4 A. Huseinovic, S. Mrdovic, K. Bicakci, S. Uludag, A taxonomy of the emerging denial-of-service attacks in the smart grid and countermeasures, in 26th Telecommunications Forum (TELFOR), vol. 2018 (IEEE, 2018), pp. 1–4
26.
go back to reference Z. Lu, X. Lu, W. Wang, C. Wang, Review and evaluation of security threats on the communication networks in the smart grid, in 2010-Milcom, Military Communications Conference, vol. 2010 (IEEE, 2010), pp. 1830–1835 Z. Lu, X. Lu, W. Wang, C. Wang, Review and evaluation of security threats on the communication networks in the smart grid, in 2010-Milcom, Military Communications Conference, vol. 2010 (IEEE, 2010), pp. 1830–1835
27.
go back to reference S.A. Yadav, S.R. Kumar, S. Sharma, A. Singh, A review of possibilities and solutions of cyber attacks in smart grids, in 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH) (IEEE, 2016), pp. 60–63 S.A. Yadav, S.R. Kumar, S. Sharma, A. Singh, A review of possibilities and solutions of cyber attacks in smart grids, in 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH) (IEEE, 2016), pp. 60–63
28.
go back to reference M. Caselli, E. Zambon, F. Kargl, Sequence-aware intrusion detection in industrial control systems, in Proceedings of the 1st ACM Workshop on Cyber-Physical System Security (2015), pp. 13–24 M. Caselli, E. Zambon, F. Kargl, Sequence-aware intrusion detection in industrial control systems, in Proceedings of the 1st ACM Workshop on Cyber-Physical System Security (2015), pp. 13–24
29.
go back to reference H. Yoo, T. Shon, Novel approach for detecting network anomalies for substation automation based on iec 61850. Multimedia Tools Appl. 74(1), 303–318 (2015)CrossRef H. Yoo, T. Shon, Novel approach for detecting network anomalies for substation automation based on iec 61850. Multimedia Tools Appl. 74(1), 303–318 (2015)CrossRef
30.
go back to reference P. Maynard, K. McLaughlin, B. Haberler, Towards understanding man-in-the-middle attacks on iec 60870-5-104 scada networks, in 2nd International Symposium for ICS and SCADA Cyber Security Research 2014 (ICS-CSR 2014) 2 (2014), pp. 30–42 P. Maynard, K. McLaughlin, B. Haberler, Towards understanding man-in-the-middle attacks on iec 60870-5-104 scada networks, in 2nd International Symposium for ICS and SCADA Cyber Security Research 2014 (ICS-CSR 2014) 2 (2014), pp. 30–42
31.
go back to reference P. Matoušek, O. Ryšavỳ, M. Grégr, V. Havlena, Flow based monitoring of ics communication in the smart grid. J. Inf. Secur. Appl. 54, 102535 (2020) P. Matoušek, O. Ryšavỳ, M. Grégr, V. Havlena, Flow based monitoring of ics communication in the smart grid. J. Inf. Secur. Appl. 54, 102535 (2020)
32.
go back to reference J. Jarmakiewicz, K. Parobczak, K. Maślanka, Cybersecurity protection for power grid control infrastructures. Int. J. Crit. Infrastruct. Prot. 18, 20–33 (2017)CrossRef J. Jarmakiewicz, K. Parobczak, K. Maślanka, Cybersecurity protection for power grid control infrastructures. Int. J. Crit. Infrastruct. Prot. 18, 20–33 (2017)CrossRef
33.
go back to reference J. Hong, C.-C. Liu, M. Govindarasu, Integrated anomaly detection for cyber security of the substations. IEEE Trans. Smart Grid 5(4), 1643–1653 (2014)CrossRef J. Hong, C.-C. Liu, M. Govindarasu, Integrated anomaly detection for cyber security of the substations. IEEE Trans. Smart Grid 5(4), 1643–1653 (2014)CrossRef
34.
go back to reference A. Valdes, S. Cheung, “Communication pattern anomaly detection in process control systems, in 2009 IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 22–29 A. Valdes, S. Cheung, “Communication pattern anomaly detection in process control systems, in 2009 IEEE Conference on Technologies for Homeland Security (IEEE, 2009), pp. 22–29
35.
go back to reference Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono, H. Wang, Intrusion detection system for iec 60870-5-104 based scada networks, in IEEE Power and Energy Society General Meeting, vol. 2013 (IEEE, 2013), 1–5 Y. Yang, K. McLaughlin, T. Littler, S. Sezer, B. Pranggono, H. Wang, Intrusion detection system for iec 60870-5-104 based scada networks, in IEEE Power and Energy Society General Meeting, vol. 2013 (IEEE, 2013), 1–5
36.
go back to reference C.-Y. Lin, S. Nadjm-Tehrani, Understanding iec-60870-5-104 traffic patterns in scada networks, in Proceedings of the 4th ACM Workshop on Cyber-Physical System Security (2018), pp. 51–60 C.-Y. Lin, S. Nadjm-Tehrani, Understanding iec-60870-5-104 traffic patterns in scada networks, in Proceedings of the 4th ACM Workshop on Cyber-Physical System Security (2018), pp. 51–60
37.
go back to reference A. Kleinmann, A. Wool, Automatic construction of statechart-based anomaly detection models for multi-threaded scada via spectral analysis, in Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy (2016), pp. 1–12 A. Kleinmann, A. Wool, Automatic construction of statechart-based anomaly detection models for multi-threaded scada via spectral analysis, in Proceedings of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy (2016), pp. 1–12
38.
go back to reference S. Shukla, S. Thakur, J.G. Breslin, Anomaly detection in smart grid network using fc-based blockchain model and linear svm, in International Conference on Machine Learning, Optimization, and Data Science (Springer, 2021), pp. 157–171 S. Shukla, S. Thakur, J.G. Breslin, Anomaly detection in smart grid network using fc-based blockchain model and linear svm, in International Conference on Machine Learning, Optimization, and Data Science (Springer, 2021), pp. 157–171
39.
go back to reference F. Harrou, Y. Sun, A.S. Hering, M. Madakyaru, A. Dairi, Unsupervised deep learning-based process monitoring methods, in Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches (Elsevier, 2021), pp. 193–223 F. Harrou, Y. Sun, A.S. Hering, M. Madakyaru, A. Dairi, Unsupervised deep learning-based process monitoring methods, in Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches (Elsevier, 2021), pp. 193–223
40.
go back to reference A. Dairi, F. Harrou, Y. Sun, M. Senouci, Obstacle detection for intelligent transportation systems using deep stacked autoencoder and \(k\)-nearest neighbor scheme. IEEE Sens. J. 18(12), 5122–5132 (2018)CrossRef A. Dairi, F. Harrou, Y. Sun, M. Senouci, Obstacle detection for intelligent transportation systems using deep stacked autoencoder and \(k\)-nearest neighbor scheme. IEEE Sens. J. 18(12), 5122–5132 (2018)CrossRef
41.
go back to reference A. Dairi, F. Harrou, M. Senouci, Y. Sun, Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robot. Auton. Syst. 100, 287–301 (2018)CrossRef A. Dairi, F. Harrou, M. Senouci, Y. Sun, Unsupervised obstacle detection in driving environments using deep-learning-based stereovision. Robot. Auton. Syst. 100, 287–301 (2018)CrossRef
42.
go back to reference D. Charte, F. Charte, S. García, M.J. del Jesus, F. Herrera, A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fus. 44, 78–96 (2018)CrossRef D. Charte, F. Charte, S. García, M.J. del Jesus, F. Herrera, A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. Inf. Fus. 44, 78–96 (2018)CrossRef
43.
go back to reference S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRef
44.
go back to reference F. Harrou, F. Kadri, Y. Sun, Forecasting of photovoltaic solar power production using lstm approach, in Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems (2020), p. 3 F. Harrou, F. Kadri, Y. Sun, Forecasting of photovoltaic solar power production using lstm approach, in Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems (2020), p. 3
45.
go back to reference A. Zeroual, F. Harrou, A. Dairi, Y. Sun, Deep learning methods for forecasting covid-19 time-series data: a comparative study. Chaos, Solitons Fractals 140, 110121 (2020)MathSciNetCrossRef A. Zeroual, F. Harrou, A. Dairi, Y. Sun, Deep learning methods for forecasting covid-19 time-series data: a comparative study. Chaos, Solitons Fractals 140, 110121 (2020)MathSciNetCrossRef
46.
go back to reference A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)CrossRef A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, A.A. Bharath, Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)CrossRef
47.
go back to reference L. Zhu, Y. Chen, P. Ghamisi, J.A. Benediktsson, Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)CrossRef L. Zhu, Y. Chen, P. Ghamisi, J.A. Benediktsson, Generative adversarial networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(9), 5046–5063 (2018)CrossRef
48.
go back to reference I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)MathSciNetCrossRef I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)MathSciNetCrossRef
49.
go back to reference F. Kadri, A. Dairi, F. Harrou, Y. Sun, Towards accurate prediction of patient length of stay at emergency department: a gan-driven deep learning framework. J. Ambient Intell. Human. Comput. 1–15 (2022) F. Kadri, A. Dairi, F. Harrou, Y. Sun, Towards accurate prediction of patient length of stay at emergency department: a gan-driven deep learning framework. J. Ambient Intell. Human. Comput. 1–15 (2022)
50.
go back to reference R.R.R. Barbosa, R. Sadre, A. Pras, Towards periodicity based anomaly detection in scada networks, in Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies and Factory Automation (ETFA 2012) (IEEE, 2012), pp. 1–4 R.R.R. Barbosa, R. Sadre, A. Pras, Towards periodicity based anomaly detection in scada networks, in Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies and Factory Automation (ETFA 2012) (IEEE, 2012), pp. 1–4
51.
go back to reference H.J. Shin, D.-H. Eom, S.-S. Kim, One-class support vector machines-an application in machine fault detection and classification. Comput. Ind. Eng. 48(2), 395–408 (2005)CrossRef H.J. Shin, D.-H. Eom, S.-S. Kim, One-class support vector machines-an application in machine fault detection and classification. Comput. Ind. Eng. 48(2), 395–408 (2005)CrossRef
52.
go back to reference F. Harrou, N. Zerrouki, A. Dairi, Y. Sun, A. Houacine, Automatic human fall detection using multiple tri-axial accelerometers, in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (2021), pp. 74–78 F. Harrou, N. Zerrouki, A. Dairi, Y. Sun, A. Houacine, Automatic human fall detection using multiple tri-axial accelerometers, in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (2021), pp. 74–78
53.
go back to reference B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)CrossRefMATH B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, R.C. Williamson, Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)CrossRefMATH
54.
go back to reference F. Harrou, N. Zerrouki, A. Dairi, Y. Sun, A. Houacine, Automatic human fall detection using multiple tri-axial accelerometers, in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (IEEE, 2021), pp. 74–78 F. Harrou, N. Zerrouki, A. Dairi, Y. Sun, A. Houacine, Automatic human fall detection using multiple tri-axial accelerometers, in 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) (IEEE, 2021), pp. 74–78
55.
go back to reference A. Dairi, F. Harrou, Y. Sun, Deep generative learning-based 1-svm detectors for unsupervised covid-19 infection detection using blood tests. IEEE Trans. Instrum. Meas. 71, 1–11 (2021)CrossRef A. Dairi, F. Harrou, Y. Sun, Deep generative learning-based 1-svm detectors for unsupervised covid-19 infection detection using blood tests. IEEE Trans. Instrum. Meas. 71, 1–11 (2021)CrossRef
56.
go back to reference F. Harrou, A. Dairi, B. Taghezouit, Y. Sun, An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class support vector machine. Sol. Energy 179, 48–58 (2019)CrossRef F. Harrou, A. Dairi, B. Taghezouit, Y. Sun, An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class support vector machine. Sol. Energy 179, 48–58 (2019)CrossRef
57.
go back to reference F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in Eighth IEEE International Conference on Data Mining, vol. 2008 (IEEE, 2008), pp. 413–422 F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation forest, in Eighth IEEE International Conference on Data Mining, vol. 2008 (IEEE, 2008), pp. 413–422
58.
go back to reference F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)CrossRef F.T. Liu, K.M. Ting, Z.-H. Zhou, Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 1–39 (2012)CrossRef
60.
go back to reference P.J. Rousseeuw, K.V. Driessen, A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)CrossRef P.J. Rousseeuw, K.V. Driessen, A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)CrossRef
61.
go back to reference M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: identifying density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (2000), pp. 93–104 M.M. Breunig, H.-P. Kriegel, R.T. Ng, J. Sander, Lof: identifying density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (2000), pp. 93–104
62.
go back to reference C.-Y. Lin, S. Nadjm-Tehrani, A comparative analysis of emulated and real iec-104 spontaneous traffic in power system networks, in International Workshop on Cyber-Physical Security for Critical Infrastructures Protection (Springer, 2020), pp. 207–223 C.-Y. Lin, S. Nadjm-Tehrani, A comparative analysis of emulated and real iec-104 spontaneous traffic in power system networks, in International Workshop on Cyber-Physical Security for Critical Infrastructures Protection (Springer, 2020), pp. 207–223
63.
go back to reference G. Clarke, D. Reynders, E. Wright, Practical modern SCADA protocols: DNP3, 60870.5 and related systems. Newnes (2004) G. Clarke, D. Reynders, E. Wright, Practical modern SCADA protocols: DNP3, 60870.5 and related systems. Newnes (2004)
64.
go back to reference F. Harrou, B. Khaldi, Y. Sun, F. Cherif, An efficient statistical strategy to monitor a robot swarm. IEEE Sens. J. 20(4), 2214–2223 (2019)CrossRef F. Harrou, B. Khaldi, Y. Sun, F. Cherif, An efficient statistical strategy to monitor a robot swarm. IEEE Sens. J. 20(4), 2214–2223 (2019)CrossRef
65.
go back to reference D.M. Powers, Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation (2020), arXiv preprint arXiv:2010.16061 D.M. Powers, Evaluation: from precision, recall and f-measure to roc, informedness, markedness and correlation (2020), arXiv preprint arXiv:​2010.​16061
67.
go back to reference P. Matoušek, V. Havlena, L. Holík, Efficient modelling of ics communication for anomaly detection using probabilistic automata, in IFIP/IEEE International Symposium on Integrated Network Management (IM), vol. 2021 (IEEE, 2021), pp. 81–89 P. Matoušek, V. Havlena, L. Holík, Efficient modelling of ics communication for anomaly detection using probabilistic automata, in IFIP/IEEE International Symposium on Integrated Network Management (IM), vol. 2021 (IEEE, 2021), pp. 81–89
68.
go back to reference A. Dairi, F. Harrou, Y. Sun, S. Khadraoui, Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach. Appl. Sci. 10(23), 8400 (2020)CrossRef A. Dairi, F. Harrou, Y. Sun, S. Khadraoui, Short-term forecasting of photovoltaic solar power production using variational auto-encoder driven deep learning approach. Appl. Sci. 10(23), 8400 (2020)CrossRef
69.
go back to reference F. Harrou, Y. Sun, A.S. Hering, M. Madakyaru et al., Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications (Elsevier, 2020) F. Harrou, Y. Sun, A.S. Hering, M. Madakyaru et al., Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications (Elsevier, 2020)
Metadata
Title
Semi-supervised Deep Learning-Driven Anomaly Detection Schemes for Cyber-Attack Detection in Smart Grids
Authors
Abdelkader Dairi
Fouzi Harrou
Benamar Bouyeddou
Sidi-Mohammed Senouci
Ying Sun
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20360-2_11