Skip to main content
Top
Published in:

01-12-2016 | Original Article

Semi-supervised policy recommendation for online social networks

Authors: Mohamed Shehab, Hakim Touati, Yousra Javed

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fine-grained policy settings in social networking sites are becoming important for managing user privacy. Incorrect privacy policy settings can easily lead to leaks in private and personal information. At the same time, being too restrictive would reduce the benefits of online social networks. This is further complicated due to the growing adoption of social networks and the rapid growth in information uploading and sharing. The problem of facilitating policy settings has attracted the attention of numerous access control, and human–computer interaction researchers. The proposed solutions range from usable interfaces for policy settings to automated policy settings. We propose a fine-grained policy recommendation system that is based on an iterative semi-supervised learning approach which leverages the social graph propagation properties. Active learning and social graph properties are used to detect the most informative instances to be labeled as training sets. We implemented and tested our approach using both participant-labeled Facebook dataset and their real policy dataset extracted using the Facebook API. We compared our proposed approach to supervised learning and random walk-based approaches. Our approach provided higher accuracy and precision for both datasets. Collaborative active learning further improved the performance of our approach. Moreover, the accuracy and precision of our approach were maintained with the addition of new friends in the social graph.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anwar M, Fong PWL, Yang XD, Hamilton H (2009) Visualizing privacy implications of access control policies in social networks. In: Workshop on data privacy management. IEEE Anwar M, Fong PWL, Yang XD, Hamilton H (2009) Visualizing privacy implications of access control policies in social networks. In: Workshop on data privacy management. IEEE
go back to reference Benczr AA, Csalogny K, Lukcs L, Siklsi D (2007) Semi-supervised learning: a comparative study for web spam and telephone user churn. In: Graph labeling workshop in conjunction with ECML/PKDD Benczr AA, Csalogny K, Lukcs L, Siklsi D (2007) Semi-supervised learning: a comparative study for web spam and telephone user churn. In: Graph labeling workshop in conjunction with ECML/PKDD
go back to reference Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory Blum A, Mitchell T (1998) Combining labeled and unlabeled data with co-training. In: Proceedings of the eleventh annual conference on computational learning theory
go back to reference Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484CrossRef Borgatti SP, Everett MG (2006) A graph-theoretic perspective on centrality. Soc Netw 28(4):466–484CrossRef
go back to reference Camps-valls G, Marsheve TVB, Zhou D (2007) Semi-supervised graph-based hyperspectral image classification. IEEE Trans Geosci Remote Sens 45:2044–3054CrossRef Camps-valls G, Marsheve TVB, Zhou D (2007) Semi-supervised graph-based hyperspectral image classification. IEEE Trans Geosci Remote Sens 45:2044–3054CrossRef
go back to reference Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. The MIT Press, Massachusetts Institute of Technology, Boca RatonCrossRef Chapelle O, Scholkopf B, Zien A (2006) Semi-supervised learning. The MIT Press, Massachusetts Institute of Technology, Boca RatonCrossRef
go back to reference Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):1–6CrossRef Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70(6):1–6CrossRef
go back to reference Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15:201–221 Cohn D, Atlas L, Ladner R (1994) Improving generalization with active learning. Mach Learn 15:201–221
go back to reference Fang L, LeFevre K (2010) Privacy wizards for social networking sites. In: Proceedings of the international conference on World wide web, ACM, pp 351–360 Fang L, LeFevre K (2010) Privacy wizards for social networking sites. In: Proceedings of the international conference on World wide web, ACM, pp 351–360
go back to reference Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRef Fouss F, Pirotte A, Renders JM, Saerens M (2007) Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Trans Knowl Data Eng 19(3):355–369CrossRef
go back to reference Joachims T (1999) Transductive inference for text classification using support vector machines. In: 16th international conference on machine learning, Morgan Kaufmann Joachims T (1999) Transductive inference for text classification using support vector machines. In: 16th international conference on machine learning, Morgan Kaufmann
go back to reference Kong X, Yu PS (2010) Semi-supervised feature selection for graph classification. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining Kong X, Yu PS (2010) Semi-supervised feature selection for graph classification. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining
go back to reference Mazzia A, LeFevre K, Adar E (2011) The PViz comprehension tool for social network privacy settings. Tech. Rep. CSE-TR-570-11, University of Michigan Mazzia A, LeFevre K, Adar E (2011) The PViz comprehension tool for social network privacy settings. Tech. Rep. CSE-TR-570-11, University of Michigan
go back to reference Mo M, Wang D, Li B, Hong D, King I (2010) Exploit of online social networks with semi-supervised learning. In: Neural Networks (IJCNN), The 2010 International Joint Conference Mo M, Wang D, Li B, Hong D, King I (2010) Exploit of online social networks with semi-supervised learning. In: Neural Networks (IJCNN), The 2010 International Joint Conference
go back to reference Newman MEJ (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016,132+ Newman MEJ (2001) Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Phys Rev E 64(1):016,132+
go back to reference Papagelis M, Plexousakis D (2005) Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Eng Appl Artif Intell 18(7):781–789CrossRef Papagelis M, Plexousakis D (2005) Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. Eng Appl Artif Intell 18(7):781–789CrossRef
go back to reference Prasad B, Martin K (2006) The ties that lead: a social network approach to leadership. Elsevier Inc, Amsterdam Prasad B, Martin K (2006) The ties that lead: a social network approach to leadership. Elsevier Inc, Amsterdam
go back to reference Ratsaby J, Venkatesh S (1995) Learning from a mixture of labeled and unlabeled examples with parametric side information. In: Annual conference on computational learning theory Ratsaby J, Venkatesh S (1995) Learning from a mixture of labeled and unlabeled examples with parametric side information. In: Annual conference on computational learning theory
go back to reference Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the eighteenth international conference on machine learning Roy N, McCallum A (2001) Toward optimal active learning through sampling estimation of error reduction. In: Proceedings of the eighteenth international conference on machine learning
go back to reference Shehab M, Cheek G, Touati H, Squicciarini AC, Cheng PC (2010) User centric policy management in online social networks. In: Proceedings of the IEEE international symposium on policies for distributed systems and networks, pp 9–13 Shehab M, Cheek G, Touati H, Squicciarini AC, Cheng PC (2010) User centric policy management in online social networks. In: Proceedings of the IEEE international symposium on policies for distributed systems and networks, pp 9–13
go back to reference Squicciarini AC, Paci F, Sundareswaran S (2014) Prima: a comprehensive approach to privacy protection in social network sites. Ann Telecommun Annales des télécommunications 69(1–2):21–36CrossRef Squicciarini AC, Paci F, Sundareswaran S (2014) Prima: a comprehensive approach to privacy protection in social network sites. Ann Telecommun Annales des télécommunications 69(1–2):21–36CrossRef
go back to reference Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009:1–19, Article ID 421425 Su X, Khoshgoftaar TM (2009) A survey of collaborative filtering techniques. Adv Artif Intell 2009:1–19, Article ID 421425
go back to reference Zhou D, Bousquet O, Lal TN, Weston J, Schlkopf B (2004) Learning with local and global consistency. In: Advances in neural information processing systems vol 16. MIT Press, Boca Raton, pp 321–328 Zhou D, Bousquet O, Lal TN, Weston J, Schlkopf B (2004) Learning with local and global consistency. In: Advances in neural information processing systems vol 16. MIT Press, Boca Raton, pp 321–328
go back to reference Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. In: Synthesis lectures on artificial intelligence and machine learning, Morgan & Claypool, pp 9–40 Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. In: Synthesis lectures on artificial intelligence and machine learning, Morgan & Claypool, pp 9–40
go back to reference Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using gaussian fields and harmonic functions. In: IN ICML Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using gaussian fields and harmonic functions. In: IN ICML
Metadata
Title
Semi-supervised policy recommendation for online social networks
Authors
Mohamed Shehab
Hakim Touati
Yousra Javed
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0370-9

Premium Partner