Skip to main content
Top

2021 | OriginalPaper | Chapter

Semi-unsupervised Learning: An In-depth Parameter Analysis

Authors : Padraig Davidson, Florian Buckermann, Michael Steininger, Anna Krause, Andreas Hotho

Published in: KI 2021: Advances in Artificial Intelligence

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Creating datasets for supervised learning is a very challenging and expensive task, in which each input example has to be annotated with its expected output (e.g. object class). By combining unsupervised and semi-supervised learning, semi-unsupervised learning proposes a new paradigm for partially labeled datasets with additional unknown classes. In this paper we focus on a better understanding of this new learning paradigm and analyze the impact of the amount of labeled data, the number of augmented classes and the selection of hidden classes on the quality of prediction. Especially the number of augmented classes highly influences classification accuracy, which needs tuning for each dataset, since too few and too many augmented classes are detrimental to classifier performance. We also show that we can improve results on a large variety of datasets when using convolutional networks as feature extractors while applying output driven entropy regularization instead of a simple weight based L2 norm.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)MathSciNetMATH Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)MathSciNetMATH
2.
go back to reference Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016 Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
3.
go back to reference Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718 (2018) Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical Japanese literature. arXiv preprint arXiv:​1812.​01718 (2018)
4.
go back to reference Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters (2017) Cohen, G., Afshar, S., Tapson, J., van Schaik, A.: EMNIST: an extension of MNIST to handwritten letters (2017)
5.
go back to reference Erhan, D., Courville, A., Bengio, Y., Vincent, P.: Why does unsupervised pre-training help deep learning? In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 201–208. JMLR Workshop and Conference Proceedings (2010) Erhan, D., Courville, A., Bengio, Y., Vincent, P.: Why does unsupervised pre-training help deep learning? In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 9, pp. 201–208. JMLR Workshop and Conference Proceedings (2010)
6.
go back to reference Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011) Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)
7.
go back to reference Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, pp. 529–536 (2005) Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: Advances in Neural Information Processing Systems, pp. 529–536 (2005)
8.
go back to reference He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015) He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)
9.
go back to reference Kilinc, O., Uysal, I.: Learning latent representations in neural networks for clustering through pseudo supervision and graph-based activity regularization. arXiv preprint arXiv:1802.03063 (2018) Kilinc, O., Uysal, I.: Learning latent representations in neural networks for clustering through pseudo supervision and graph-based activity regularization. arXiv preprint arXiv:​1802.​03063 (2018)
10.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)
11.
go back to reference Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing, vol. 27, pp. 3581–3589 (2014) Kingma, D.P., Mohamed, S., Jimenez Rezende, D., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing, vol. 27, pp. 3581–3589 (2014)
13.
go back to reference LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
14.
go back to reference Maaløe, L., Sønderby, C.K., Sønderby, S.K., Winther, O.: Auxiliary deep generative models. In: Proceedings of The 33rd International Conference on ML. Proceedings of ML Research, vol. 48, pp. 1445–1453. PMLR, 20–22 June 2016 Maaløe, L., Sønderby, C.K., Sønderby, S.K., Winther, O.: Auxiliary deep generative models. In: Proceedings of The 33rd International Conference on ML. Proceedings of ML Research, vol. 48, pp. 1445–1453. PMLR, 20–22 June 2016
15.
go back to reference Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008) Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
16.
go back to reference Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1038–1042 (2018) Madani, A., Moradi, M., Karargyris, A., Syeda-Mahmood, T.: Semi-supervised learning with generative adversarial networks for chest X-ray classification with ability of data domain adaptation. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1038–1042 (2018)
18.
go back to reference Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRef Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)CrossRef
19.
go back to reference Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019) Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)
20.
go back to reference Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetMATH
21.
go back to reference Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 1278–1286. PMLR (2014) Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 1278–1286. PMLR (2014)
22.
go back to reference Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: International Conference on Learning Representations (2016) Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: International Conference on Learning Representations (2016)
23.
go back to reference Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014) Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:​1412.​6806 (2014)
27.
go back to reference Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019) Wang, W., Zheng, V.W., Yu, H., Miao, C.: A survey of zero-shot learning: settings, methods, and applications. ACM Trans. Intell. Syst. Technol. 10(2) (2019)
29.
go back to reference Willetts, M., Doherty, A., Roberts, S., Holmes, C.: Semi-unsupervised learning using deep generative models. In: NeurIPS (2018) Willetts, M., Doherty, A., Roberts, S., Holmes, C.: Semi-unsupervised learning using deep generative models. In: NeurIPS (2018)
30.
go back to reference Willetts, M., Roberts, S.J., Holmes, C.C.: Semi-unsupervised learning: clustering and classifying using ultra-sparse labels. In: IEEE International Conference on Big Data 2020: ML on Big Data (2021) Willetts, M., Roberts, S.J., Holmes, C.C.: Semi-unsupervised learning: clustering and classifying using ultra-sparse labels. In: IEEE International Conference on Big Data 2020: ML on Big Data (2021)
31.
go back to reference Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018 Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
32.
go back to reference Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning - the good, the bad and the ugly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017 Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning - the good, the bad and the ugly. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017
33.
go back to reference Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017) Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:​1708.​07747 (2017)
Metadata
Title
Semi-unsupervised Learning: An In-depth Parameter Analysis
Authors
Padraig Davidson
Florian Buckermann
Michael Steininger
Anna Krause
Andreas Hotho
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87626-5_5

Premium Partner