Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2022 | OriginalPaper | Chapter

4. Semiconducting Materials for Printed Flexible Electronics

Abstract

Inorganic, organic, and hybrid composite semiconducting materials are critical for developing active flexible electronics. Inorganic materials have superior properties in terms of performance and stability while solution processable organic semiconductors are attractive due to low-cost processing at ambient environment and flexibility. Examples of inorganic semiconductors commonly used for flexible electronics are Si, oxides of transition metals, and chalcogenides. From the printability point of view, the solubility and proper dispersion of organic semiconductors are important parameters. Commonly used solution-processed organic semiconductors having acceptable charge transport and mobility include regioregular poly(3-hexylthiophene) (P3HT), poly(triarylamine), poly(3,3-didodecyl quaterthiophene) (PQT), poly(2,5-bis(3-tetradecyllthiophen-2-yl) and thieno[3,2-b]thiophene) (PBTTT). Fullerenes and solution processable derivatives such as phenyl-C61-butyric acid methyl ester (PCBM) blended with P3HT are some of the commonly used electron donors and acceptors in the bulk heterojunction devices. Additionally, carbon nanotubes and graphene are also under investigation due to their high mobility. Besides, three-dimensionally confined semiconductor quantum dots and nanoconfinement of semiconductors have emerged to be a versatile material system with unique physical properties for a wide range of device applications including flexible electronics. This chapter will provide a brief review on the perspectives and prospects of semiconducting materials for printed flexible electronics, including inorganic, organic semiconductors and their composite systems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:5678 CrossRef Akinwande D, Petrone N, Hone J (2014) Two-dimensional flexible nanoelectronics. Nat Commun 5:5678 CrossRef
go back to reference Agranovich VM, Gartstein YN, Litinskaya M (2011) Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Rev 111(9):5179–5214 Agranovich VM, Gartstein YN, Litinskaya M (2011) Hybrid resonant organic–inorganic nanostructures for optoelectronic applications. Chem Rev 111(9):5179–5214
go back to reference Baca AJ et al (2007) Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv Funct Mater 17:3051–3062 CrossRef Baca AJ et al (2007) Printable single-crystal silicon micro/nanoscale ribbons, platelets and bars generated from bulk wafers. Adv Funct Mater 17:3051–3062 CrossRef
go back to reference Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154 Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395:151–154
go back to reference Borsenberger PM, Weiss DS (1993) Organic photoreceptors for imaging systems. Marcel Dekker, New York Borsenberger PM, Weiss DS (1993) Organic photoreceptors for imaging systems. Marcel Dekker, New York
go back to reference Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292 CrossRef Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mater Sol Cells 83:273–292 CrossRef
go back to reference Brody TP (1984) The thin film transistor—a late flowering bloom. IEEE Trans Electron Devices 31(11):1614–1628 CrossRef Brody TP (1984) The thin film transistor—a late flowering bloom. IEEE Trans Electron Devices 31(11):1614–1628 CrossRef
go back to reference Brütting W (2005) Organic semiconductors. In: Lerner RG, Triggs GL (Hrsg) Encyclopedia of physics. Wiley-VCH, Weinheim, pp 1866–1876 Brütting W (2005) Organic semiconductors. In: Lerner RG, Triggs GL (Hrsg) Encyclopedia of physics. Wiley-VCH, Weinheim, pp 1866–1876
go back to reference Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541 CrossRef Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347:539–541 CrossRef
go back to reference Carter J, Crankshaw M, Jung S (2013) Flat panel organic light-emitting diode (OLED) displays: a case study. In: Hutchings M, Martin GD (eds) Inkjet technology for digital fabrication. I. Wiley, Chichester, pp 237–254 Carter J, Crankshaw M, Jung S (2013) Flat panel organic light-emitting diode (OLED) displays: a case study. In: Hutchings M, Martin GD (eds) Inkjet technology for digital fabrication. I. Wiley, Chichester, pp 237–254
go back to reference Coe S, Woo W-K, Bawendi M, Bulović V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803 CrossRef Coe S, Woo W-K, Bawendi M, Bulović V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803 CrossRef
go back to reference Collini E, Scholes GD (2009) Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323:369–373 CrossRef Collini E, Scholes GD (2009) Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323:369–373 CrossRef
go back to reference Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836 CrossRef Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836 CrossRef
go back to reference Dey A, Singh A, Das D, Iyer PK (2015) Organic semiconductors: a new future of nanodevices and applications. In: Babu Krishna Moorthy S (ed) Thin film structures in energy applications. Springer, Cham, pp 97–128 Dey A, Singh A, Das D, Iyer PK (2015) Organic semiconductors: a new future of nanodevices and applications. In: Babu Krishna Moorthy S (ed) Thin film structures in energy applications. Springer, Cham, pp 97–128
go back to reference Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117 CrossRef Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117 CrossRef
go back to reference Dong H, Fu X, Liu J, Wang Z, Hu W (2013) 25th Anniversary article: key points for high-mobility organic field-effect transistors. Adv Mater 25:6158–6183 CrossRef Dong H, Fu X, Liu J, Wang Z, Hu W (2013) 25th Anniversary article: key points for high-mobility organic field-effect transistors. Adv Mater 25:6158–6183 CrossRef
go back to reference Farchioni R, Grosso G (eds) (2001) Organic electronic materials. Springer, Berlin Farchioni R, Grosso G (eds) (2001) Organic electronic materials. Springer, Berlin
go back to reference Faupel F, Dimitrakopoulos C, Kahn A, Wöll C (eds) (2004) Org Electron. Special Issue of J Mater Res 19(7) Faupel F, Dimitrakopoulos C, Kahn A, Wöll C (eds) (2004) Org Electron. Special Issue of J Mater Res 19(7)
go back to reference Filo J, Putala M (2010) Semiconducting organic molecular materials. J Electr Eng 61(5):314–320 Filo J, Putala M (2010) Semiconducting organic molecular materials. J Electr Eng 61(5):314–320
go back to reference Guzelturk B, Demir HV (2015) Organic-Inorganic composites of semiconductor nanocrystals for efficient excitonics. J Phys Chem Lett 6(12):2206–2215 Guzelturk B, Demir HV (2015) Organic-Inorganic composites of semiconductor nanocrystals for efficient excitonics. J Phys Chem Lett 6(12):2206–2215
go back to reference Guzelturk B, Hernandez Martinez PL, Sharma VK, Coskun Y, Ibrahimova V, Tuncel D, Govorov AO, Sun XW, Xiong Q, Demir HV et al (2014) Study of exciton transfer in dense quantum dot nanocomposites. Nanoscale 6:11387–11394 CrossRef Guzelturk B, Hernandez Martinez PL, Sharma VK, Coskun Y, Ibrahimova V, Tuncel D, Govorov AO, Sun XW, Xiong Q, Demir HV et al (2014) Study of exciton transfer in dense quantum dot nanocomposites. Nanoscale 6:11387–11394 CrossRef
go back to reference Hsieh P-Y, Lee C-Y, Tai N-H (2015) A high carrier-mobility crystalline silicon film directly grown on polyimide using SiCl4/H2 microwave plasma for flexible thin film transistors. J Mater Chem C 3:7513–7522 CrossRef Hsieh P-Y, Lee C-Y, Tai N-H (2015) A high carrier-mobility crystalline silicon film directly grown on polyimide using SiCl4/H2 microwave plasma for flexible thin film transistors. J Mater Chem C 3:7513–7522 CrossRef
go back to reference Jacob MV (2014) Organic semiconductors: past, present and future. Electronics 3:594–597 CrossRef Jacob MV (2014) Organic semiconductors: past, present and future. Electronics 3:594–597 CrossRef
go back to reference Janssen RAJ, Hummelen JC, Sariciftci NS (2005) Polymer–fullerene bulk heterojunction solar cells. MRS Bull 30(1):33–36 CrossRef Janssen RAJ, Hummelen JC, Sariciftci NS (2005) Polymer–fullerene bulk heterojunction solar cells. MRS Bull 30(1):33–36 CrossRef
go back to reference Kang K et al (2015) High-mobility three-atom-thick semiconducting films with waferscale homogeneity. Nature 520:656–660 CrossRef Kang K et al (2015) High-mobility three-atom-thick semiconducting films with waferscale homogeneity. Nature 520:656–660 CrossRef
go back to reference Karl N (1985) Organic semiconductors. In: Madelung O, Schulz M, Weiss H (eds), Landolt-Boernstein (New Series), Group III, vol 17, Semiconductors, subvol 17i. Springer, Berlin, p 106 Karl N (1985) Organic semiconductors. In: Madelung O, Schulz M, Weiss H (eds), Landolt-Boernstein (New Series), Group III, vol 17, Semiconductors, subvol 17i. Springer, Berlin, p 106
go back to reference Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185 CrossRef Khan S, Lorenzelli L, Dahiya RS (2015) Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sensors J 15(6):3164–3185 CrossRef
go back to reference Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS et al (2015) Flexible, highly efficient all-polymer solar cells. Nat Commun 6:8547 CrossRef Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS et al (2015) Flexible, highly efficient all-polymer solar cells. Nat Commun 6:8547 CrossRef
go back to reference Klinke C, Chen J, Afzali A, Avouris P (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5(3):555–558 CrossRef Klinke C, Chen J, Afzali A, Avouris P (2005) Charge transfer induced polarity switching in carbon nanotube transistors. Nano Lett 5(3):555–558 CrossRef
go back to reference Ko HC, Baca AJ, Rogers JA (2006) Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett 6:2318–2324 CrossRef Ko HC, Baca AJ, Rogers JA (2006) Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. Nano Lett 6:2318–2324 CrossRef
go back to reference Ko H et al (2010) Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468:286–289 CrossRef Ko H et al (2010) Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468:286–289 CrossRef
go back to reference Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New York Lampert MA, Mark P (1970) Current injection in solids. Academic Press, New York
go back to reference Lee SJ, Kim Y-J, Yeo SY, Lee E, Lim HS, Kim M, Song Y-W, Cho J, Lim JA (2015) Centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend for one-step printing fabrication of organic field-effect transistors. Sci Rep 5:14010. https://​doi.​org/​10.​1038/​srep14010 CrossRef Lee SJ, Kim Y-J, Yeo SY, Lee E, Lim HS, Kim M, Song Y-W, Cho J, Lim JA (2015) Centro-apical self-organization of organic semiconductors in a line-printed organic semiconductor: polymer blend for one-step printing fabrication of organic field-effect transistors. Sci Rep 5:14010. https://​doi.​org/​10.​1038/​srep14010 CrossRef
go back to reference Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W (2013) High-efficiency hybrid solar cells based on polymer/PbS xSe 1−x nanocrystals benefiting from vertical phase segregation. Adv Mater 25:5772–5778 CrossRef Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W (2013) High-efficiency hybrid solar cells based on polymer/PbS xSe 1−x nanocrystals benefiting from vertical phase segregation. Adv Mater 25:5772–5778 CrossRef
go back to reference Magnan F (2017) Sulphur- & nitrogen-containing π-conjugated organic molecules as potential semiconductors for optoelectronic devices. PhD dissertation, University of Ottawa, Ottawa, Canada Magnan F (2017) Sulphur- & nitrogen-containing π-conjugated organic molecules as potential semiconductors for optoelectronic devices. PhD dissertation, University of Ottawa, Ottawa, Canada
go back to reference Matsumura M, Camata RP (2005) Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates. Thin Solid Films 476:317–321 CrossRef Matsumura M, Camata RP (2005) Pulsed laser deposition and photoluminescence measurements of ZnO thin films on flexible polyimide substrates. Thin Solid Films 476:317–321 CrossRef
go back to reference Meitl MA et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5:33–38 CrossRef Meitl MA et al (2006) Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 5:33–38 CrossRef
go back to reference Milliron DJ, Mitzi DB, Copel M, Murray CE (2006) Solution-processed metal chalcogenide films for p-type transistors. Chem Mater 18:587–590 CrossRef Milliron DJ, Mitzi DB, Copel M, Murray CE (2006) Solution-processed metal chalcogenide films for p-type transistors. Chem Mater 18:587–590 CrossRef
go back to reference Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14:2355–2365 CrossRef Mitzi DB (2004) Solution-processed inorganic semiconductors. J Mater Chem 14:2355–2365 CrossRef
go back to reference O’Connor B, Kline RJ, Conrad BR, Richter LJ, Gundlach D, Toney MF, DeLongchamp DM (2011) Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv Funct Mater 21:3697–3705 CrossRef O’Connor B, Kline RJ, Conrad BR, Richter LJ, Gundlach D, Toney MF, DeLongchamp DM (2011) Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv Funct Mater 21:3697–3705 CrossRef
go back to reference Pfeiffer M, Leo K, Zhou X, Huang JS, Hofmann M, Werner A, Blochwitz-Nimoth J (2003) Doped organic semiconductors: physics and application in light emitting diodes. Org Electron 4(2–3):89–103 CrossRef Pfeiffer M, Leo K, Zhou X, Huang JS, Hofmann M, Werner A, Blochwitz-Nimoth J (2003) Doped organic semiconductors: physics and application in light emitting diodes. Org Electron 4(2–3):89–103 CrossRef
go back to reference Presley RE, Hong D, Chiang HQ, Hung CM, Hoffman RL, Wager JF (2006) Transparent ring oscillator based on indium gallium oxide thin-film transistors. Solid State Electron 50:500–503 Presley RE, Hong D, Chiang HQ, Hung CM, Hoffman RL, Wager JF (2006) Transparent ring oscillator based on indium gallium oxide thin-film transistors. Solid State Electron 50:500–503
go back to reference Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45–53 CrossRef Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45–53 CrossRef
go back to reference Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ (2017) Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev 117(9):6467–6499 CrossRef Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ (2017) Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev 117(9):6467–6499 CrossRef
go back to reference Scott JI, Xue X, Wang M, Kline RJ, Hoffman BC, Dougherty D, Zhou C, Bazan G, O’Connor BT (2016) Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl Mater Interfaces 8(22):14037–14045 CrossRef Scott JI, Xue X, Wang M, Kline RJ, Hoffman BC, Dougherty D, Zhou C, Bazan G, O’Connor BT (2016) Significantly increasing the ductility of high performance polymer semiconductors through polymer blending. ACS Appl Mater Interfaces 8(22):14037–14045 CrossRef
go back to reference Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:84–843 CrossRef Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:84–843 CrossRef
go back to reference Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335 CrossRef Sirringhaus H (2014) 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv Mater 26:1319–1335 CrossRef
go back to reference Skotheim TA, Elsembaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Marcel Dekker, New York Skotheim TA, Elsembaumer RL, Reynolds JR (eds) (1998) Handbook of conducting polymers. Marcel Dekker, New York
go back to reference Sun Y, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916 CrossRef Sun Y, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916 CrossRef
go back to reference Sun T, Scott JI, Wang M, Kline RJ, Bazan GC, O’Connor BT (2017) Plastic deformation of polymer blends as a means to achieve stretchable organic transistors. Adv Electron Mater 3:1600388 CrossRef Sun T, Scott JI, Wang M, Kline RJ, Bazan GC, O’Connor BT (2017) Plastic deformation of polymer blends as a means to achieve stretchable organic transistors. Adv Electron Mater 3:1600388 CrossRef
go back to reference Troccoli MN, Roudbari AJ, Chuang T-K, Hatalis MK (2006) Solid State Electron 50(6):1080–1087 CrossRef Troccoli MN, Roudbari AJ, Chuang T-K, Hatalis MK (2006) Solid State Electron 50(6):1080–1087 CrossRef
go back to reference Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133(8):2605–2612 CrossRef Tsao HN, Cho DM, Park I, Hansen MR, Mavrinskiy A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K (2011) Ultrahigh mobility in polymer field-effect transistors by design. J Am Chem Soc 133(8):2605–2612 CrossRef
go back to reference van Duren JKJ, Yang XN, Loos J, Bulle-Lieuwma CWT, Sieval AB, Hummelen JC, Janssen RAJ (2004) Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv Funct Mater 14(5):425–434 CrossRef van Duren JKJ, Yang XN, Loos J, Bulle-Lieuwma CWT, Sieval AB, Hummelen JC, Janssen RAJ (2004) Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Adv Funct Mater 14(5):425–434 CrossRef
go back to reference Weimer PK (1962) The TFT a new thin-film transistor. Proceedings of the IRE 50(6):1462–1469 Weimer PK (1962) The TFT a new thin-film transistor. Proceedings of the IRE 50(6):1462–1469
go back to reference Wienk MM, Kroon JM, Verhees WJ, Knol J, Hummelen JC, van Hal PA, Janssen RA (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed Engl 42(29):3371–3375 CrossRef Wienk MM, Kroon JM, Verhees WJ, Knol J, Hummelen JC, van Hal PA, Janssen RA (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed Engl 42(29):3371–3375 CrossRef
go back to reference Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347 CrossRef Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347 CrossRef
go back to reference Yang K (2017) Conjugated polymers and small molecules with latent hydrogen-bonding for organic electronic applications. PhD dissertation, University of Akron, Akron, USA Yang K (2017) Conjugated polymers and small molecules with latent hydrogen-bonding for organic electronic applications. PhD dissertation, University of Akron, Akron, USA
go back to reference Yu KJ, Yan Z, Han M, Rogers JA (2017) Inorganic semiconducting materials for flexible and stretchable electronics. npj Flexible Electron 1:4 CrossRef Yu KJ, Yan Z, Han M, Rogers JA (2017) Inorganic semiconducting materials for flexible and stretchable electronics. npj Flexible Electron 1:4 CrossRef
go back to reference Yuan H-C et al (2009) Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl Phys Lett 94:013102 CrossRef Yuan H-C et al (2009) Flexible photodetectors on plastic substrates by use of printing transferred single-crystal germanium membranes. Appl Phys Lett 94:013102 CrossRef
go back to reference Zhang P et al (2006) Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439:703–706 CrossRef Zhang P et al (2006) Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature 439:703–706 CrossRef
Metadata
Title
Semiconducting Materials for Printed Flexible Electronics
Author
Colin Tong
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-79804-8_4

Premium Partners