Skip to main content
Top

2011 | OriginalPaper | Chapter

6. Sensing Single Protein Molecules with Solid-State Nanopores

Authors : Bradley Ledden, Daniel Fologea, David S. Talaga, Jiali Li

Published in: Nanopores

Publisher: Springer US

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is focused on the development of experiments and theory of using solid-state nanopores for sensing single protein molecules in their native and unfolded states. Proteins serve diverse roles such as transport carriers, catalysts, molecular motors, cellular structural support, and others that make life possible. Because of these widely differing roles, proteins have an enormously diverse set of shapes, sizes, and charge structures as compared to polynucleic acids. Solid-state nanopores are particularly suitable for characterizing single protein molecules because they can be fabricated with adjustable dimensions and are stable under conditions that denature proteins. This chapter describes the nanopore experimental setup, signal recording, data analysis, and basic principles related to the experiments and the theory connecting the electrical signal with the properties of proteins. Examples of experimental results illustrate the ability of solid-state nanopores to differentiate proteins in their folded and unfolded states. Native-state protein nanopore translocation follows biased one-dimensional diffusion of charged particles that is sensitive to size and electrical charge. Due to the heterogeneous charge sequence of polypeptides, unfolded proteins obey a coupled electrophoretic and thermally activated process that is sequence specific. The chapter concludes with a discussion of future directions and open challenges for single protein characterization using solid-state nanopores.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rapoport, T.A., Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature, 2007. 450(29): p. 663–669.CrossRef Rapoport, T.A., Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature, 2007. 450(29): p. 663–669.CrossRef
2.
go back to reference Wickner, W. and R. Schekman, Protein Translocation Across Biological Membranes. Science, 2005. 310(5753): p. 1452–1456.CrossRef Wickner, W. and R. Schekman, Protein Translocation Across Biological Membranes. Science, 2005. 310(5753): p. 1452–1456.CrossRef
3.
go back to reference Simon, S.M. and G. Blobel, A protein-conducting channel in the endoplasmic reticulum. 1991. 65(3): p. 371–380. Simon, S.M. and G. Blobel, A protein-conducting channel in the endoplasmic reticulum. 1991. 65(3): p. 371–380.
4.
go back to reference Sutherland, T.C., Y.-T. Long, R.-l. Stefureac, I. Bediako-Amoa, H.-B. Kraatz and J.S. Lee, Structure of Peptides Investigated by Nanopore Analysis. Nano Lett, 2004. 4(7): p. 1273–1277.CrossRef Sutherland, T.C., Y.-T. Long, R.-l. Stefureac, I. Bediako-Amoa, H.-B. Kraatz and J.S. Lee, Structure of Peptides Investigated by Nanopore Analysis. Nano Lett, 2004. 4(7): p. 1273–1277.CrossRef
5.
go back to reference Stefureac, R., L. Waldner, P. Howard and J.S. Lee, Nanopore Analysis of a Small 86-Residue Protein. Small, 2008. 4(1): p. 59–63CrossRef Stefureac, R., L. Waldner, P. Howard and J.S. Lee, Nanopore Analysis of a Small 86-Residue Protein. Small, 2008. 4(1): p. 59–63CrossRef
6.
go back to reference Oukhaled, G., J. Mathe, A.L. Biance, L. Bacri, J.M. Betton, D. Lairez, J. Pelta and L. Auvray, Unfolding of Proteins and Long Transient Conformations Detected by Single Nanopore Recording. Physical Review Letters, 2007. 98(15): p. 158101–4CrossRef Oukhaled, G., J. Mathe, A.L. Biance, L. Bacri, J.M. Betton, D. Lairez, J. Pelta and L. Auvray, Unfolding of Proteins and Long Transient Conformations Detected by Single Nanopore Recording. Physical Review Letters, 2007. 98(15): p. 158101–4CrossRef
7.
go back to reference Pastoriza-Gallego, G.G. M., B. Thiebot, J.-M. Betton and J. Pelta, Polyelectrolyte and unfolded protein pore entrance depends on the pore geometry. Biochimica et Biophysica Acta - Biomembranes 2009. 1788: p. 1377–1386.CrossRef Pastoriza-Gallego, G.G. M., B. Thiebot, J.-M. Betton and J. Pelta, Polyelectrolyte and unfolded protein pore entrance depends on the pore geometry. Biochimica et Biophysica Acta - Biomembranes 2009. 1788: p. 1377–1386.CrossRef
8.
go back to reference Mohammad, S. Prakash, A. Matouschek and L. Movileanu, Controlling a Single Protein in a Nanopore through Electrostatic Traps. Journal of the American Chemical Society, 2008. 130(12): p. 4081–4088.CrossRef Mohammad, S. Prakash, A. Matouschek and L. Movileanu, Controlling a Single Protein in a Nanopore through Electrostatic Traps. Journal of the American Chemical Society, 2008. 130(12): p. 4081–4088.CrossRef
9.
go back to reference Movileanu, L., S. Howorka, O. Braha and H. Bayley, Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotech, 2000. 18(10): p. 1091–1095.CrossRef Movileanu, L., S. Howorka, O. Braha and H. Bayley, Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore. Nat Biotech, 2000. 18(10): p. 1091–1095.CrossRef
10.
go back to reference Han, A., G. Schurman, G. Mondin, R.A. Bitterli, N.G. Hegelbach, N.F. de Rooij and U. Staufer, Sensing protein molecules using nanofabricated pores. APPLIED PHYSICS LETTER, 2006. 88: p. 093901–3.CrossRef Han, A., G. Schurman, G. Mondin, R.A. Bitterli, N.G. Hegelbach, N.F. de Rooij and U. Staufer, Sensing protein molecules using nanofabricated pores. APPLIED PHYSICS LETTER, 2006. 88: p. 093901–3.CrossRef
11.
go back to reference Han, A., M. Creus, G. Schurmann, V. Linder, T.R. Ward, N.F. de Rooij and U. Staufer, Label-Free Detection of Single Protein Molecules and Protein−Protein Interactions Using Synthetic Nanopores. Analytical Chemistry, 2008. 80(12): p. 4651–4658%U http://dx.doi.org/10.1021/ac7025207. Han, A., M. Creus, G. Schurmann, V. Linder, T.R. Ward, N.F. de Rooij and U. Staufer, Label-Free Detection of Single Protein Molecules and Protein−Protein Interactions Using Synthetic Nanopores. Analytical Chemistry, 2008. 80(12): p. 4651–4658%U http://​dx.​doi.​org/​10.​1021/​ac7025207.
12.
go back to reference Fologea, D., B. Ledden, D.S. McNabb and J. Li, Electrical Characterization of Protein Molecules by a Solid-State Nanopore. APPLIED PHYSICS LETTERS, 2007. 91. Fologea, D., B. Ledden, D.S. McNabb and J. Li, Electrical Characterization of Protein Molecules by a Solid-State Nanopore. APPLIED PHYSICS LETTERS, 2007. 91.
13.
go back to reference Talaga, D.S. and J. Li, Single-Molecule Protein Unfolding in Solid State Nanopores. Journal of American Chemical Society, 2009. 131(26): p. 9287–9297.CrossRef Talaga, D.S. and J. Li, Single-Molecule Protein Unfolding in Solid State Nanopores. Journal of American Chemical Society, 2009. 131(26): p. 9287–9297.CrossRef
14.
go back to reference Firnkes, M., D. Pedone, J. Knezevic, M. Döblinger and U. Rant, Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis. Nano Letters, 2010. 10(6): p. 2162–2167. Firnkes, M., D. Pedone, J. Knezevic, M. Döblinger and U. Rant, Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis. Nano Letters, 2010. 10(6): p. 2162–2167.
15.
go back to reference Niedzwiecki, D.J., J. Grazul and L. Movileanu, Single-Molecule Observation of Protein Adsorption onto an Inorganic Surface. Journal of the American Chemical Society, 2010. 132(31): p. 10816–10822.CrossRef Niedzwiecki, D.J., J. Grazul and L. Movileanu, Single-Molecule Observation of Protein Adsorption onto an Inorganic Surface. Journal of the American Chemical Society, 2010. 132(31): p. 10816–10822.CrossRef
16.
go back to reference Li, J., M. Gershow, D. Stein, E. Brandin and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nat. Mater., 2003. 2: p. 611–615.CrossRef Li, J., M. Gershow, D. Stein, E. Brandin and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nat. Mater., 2003. 2: p. 611–615.CrossRef
17.
go back to reference Bezrukov, S.M., Ion Channels as Molecular Coulter Counters to Probe Metabolite Transport. Journal of Membrane Biology, 2000. 174(1): p. 1–13.CrossRefMathSciNet Bezrukov, S.M., Ion Channels as Molecular Coulter Counters to Probe Metabolite Transport. Journal of Membrane Biology, 2000. 174(1): p. 1–13.CrossRefMathSciNet
18.
go back to reference DeBlois, R.W. and C.P. Bean, Counting and Sizing of Submicron Particles by the Resistive Pulse Technique. Review of Scientific Instruments, 1970. 41(7): p. 909.CrossRef DeBlois, R.W. and C.P. Bean, Counting and Sizing of Submicron Particles by the Resistive Pulse Technique. Review of Scientific Instruments, 1970. 41(7): p. 909.CrossRef
19.
go back to reference Gregg, E.C. and k.D. Steidley, Electrical Counting and Sizing of Mammalian Cells in Suspension. Biophysical Journal, 1965. 5(4): p. 393–405. Gregg, E.C. and k.D. Steidley, Electrical Counting and Sizing of Mammalian Cells in Suspension. Biophysical Journal, 1965. 5(4): p. 393–405.
20.
go back to reference Henriquez, R.R., T. Ito, L. Sun and R.M. Crooks, The resurgence of Coulter counting for analyzing nanoscale objects. The Analyst, 2004. 2004(129): p. 478–482.CrossRef Henriquez, R.R., T. Ito, L. Sun and R.M. Crooks, The resurgence of Coulter counting for analyzing nanoscale objects. The Analyst, 2004. 2004(129): p. 478–482.CrossRef
21.
go back to reference Smeets, R.M., U.F. Keyser, D. Krapf, M.-Y. Wu, D. Nynke H and C. Dekker, Salt Dependence of Ion Transport and DNA Translocation through Solid-state nanopores. Nano Lett., 2006. 6(1): p. 89–95.CrossRef Smeets, R.M., U.F. Keyser, D. Krapf, M.-Y. Wu, D. Nynke H and C. Dekker, Salt Dependence of Ion Transport and DNA Translocation through Solid-state nanopores. Nano Lett., 2006. 6(1): p. 89–95.CrossRef
22.
go back to reference King, G.M. and J.A. Golovchenko, Probing Nanotube-Nanopore Interactions. Physical Review Letters, 2005. 95(21): p. 216103.CrossRef King, G.M. and J.A. Golovchenko, Probing Nanotube-Nanopore Interactions. Physical Review Letters, 2005. 95(21): p. 216103.CrossRef
23.
go back to reference Levadny, V., V.M. Aguilella and M. Belaya, Access resistance of a single conducting membrane channel. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1998. 1368(2): p. 338–342. Levadny, V., V.M. Aguilella and M. Belaya, Access resistance of a single conducting membrane channel. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1998. 1368(2): p. 338–342.
24.
go back to reference Vodyanoy, I. and S.M. Bezrukov, Sizing of an ion pore by access resistance measurements. Biophysical Journal, 1992. 62(1): p. 10–11.CrossRef Vodyanoy, I. and S.M. Bezrukov, Sizing of an ion pore by access resistance measurements. Biophysical Journal, 1992. 62(1): p. 10–11.CrossRef
25.
go back to reference Dekker, C., Solid-state nanopores. Nature Nanotechnology, 2007. 2: p. 209–215. Dekker, C., Solid-state nanopores. Nature Nanotechnology, 2007. 2: p. 209–215.
26.
go back to reference Healy, K., B. Schiedt and A.P. Morrison, Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2007. 2(6): p. 875–897.CrossRef Healy, K., B. Schiedt and A.P. Morrison, Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2007. 2(6): p. 875–897.CrossRef
27.
go back to reference Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166–169. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166–169.
28.
go back to reference Gierhart, B.C., D.G. Howitt, S.J. Chen, Z. Zhu, D.E. Kotecki, R.L. Smith and S.D. Collins, Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA, in The 14th International Conference on Solid-State Sensors, Actuators and Microsystems. 2007, Transducers & Eurosensors: Lyon, France. Gierhart, B.C., D.G. Howitt, S.J. Chen, Z. Zhu, D.E. Kotecki, R.L. Smith and S.D. Collins, Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA, in The 14th International Conference on Solid-State Sensors, Actuators and Microsystems. 2007, Transducers & Eurosensors: Lyon, France.
29.
go back to reference Stein, D., J. Li and J.A. Golovchenko, Ion-Beam Sculpting Time Scales. Physical Review Letters, 2002. 89(27). Stein, D., J. Li and J.A. Golovchenko, Ion-Beam Sculpting Time Scales. Physical Review Letters, 2002. 89(27).
30.
go back to reference Storm, A.J., J.H. Chen, X.S. Ling, H.W. Zandbergen and C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2003. 2: p. 537–540.CrossRef Storm, A.J., J.H. Chen, X.S. Ling, H.W. Zandbergen and C. Dekker, Fabrication of solid-state nanopores with single-nanometre precision. Nature Materials, 2003. 2: p. 537–540.CrossRef
31.
go back to reference Venkatesan, B.M., B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov and R. Bashir, Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Adv. Mater., 2009. 21: p. 1–6. Venkatesan, B.M., B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov and R. Bashir, Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis. Adv. Mater., 2009. 21: p. 1–6.
32.
go back to reference Venkatesan, B.M., A.B. Shah, J.-M. Zuo and R. Bashir, DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Adv. Funct. Mater., 2010. 20: p. 1266–1275.CrossRef Venkatesan, B.M., A.B. Shah, J.-M. Zuo and R. Bashir, DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore Sensors. Adv. Funct. Mater., 2010. 20: p. 1266–1275.CrossRef
33.
go back to reference Stein, D.M., C.J. McMullan, J. Li and J.A. Golovchenko, Feedback-controlled ion beam sculpting apparatus. Review of Scientific Instruments, 2004. 75(4): p. 900–905.CrossRef Stein, D.M., C.J. McMullan, J. Li and J.A. Golovchenko, Feedback-controlled ion beam sculpting apparatus. Review of Scientific Instruments, 2004. 75(4): p. 900–905.CrossRef
34.
go back to reference Cai, Ledden, Krueger, Golovchenko and Li, Nanopore sculpting with noble gas ions. Journal of Applied Physics, 2006. 100. Cai, Ledden, Krueger, Golovchenko and Li, Nanopore sculpting with noble gas ions. Journal of Applied Physics, 2006. 100.
35.
go back to reference Talaga, D. and J. Li, Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc., 2009. 131: p. 9287–9297.CrossRef Talaga, D. and J. Li, Single-molecule protein unfolding in solid state nanopores. J. Am. Chem. Soc., 2009. 131: p. 9287–9297.CrossRef
36.
go back to reference Fologea, D., B. Ledden, D.S. McNabb and J. Li, Electrical Characterization of Protein Molecules in a Solid-State Nanopore. Appl. Phys. Lett., 2007. 91. Fologea, D., B. Ledden, D.S. McNabb and J. Li, Electrical Characterization of Protein Molecules in a Solid-State Nanopore. Appl. Phys. Lett., 2007. 91.
37.
go back to reference Peters, T., Jr., Serum Albumin. Adv. Protein Chem., 1985. 37: p. 161–245. Peters, T., Jr., Serum Albumin. Adv. Protein Chem., 1985. 37: p. 161–245.
38.
go back to reference Collins, B.E., K.-P.S. Dancil, G. Abbi and M.J. Sailor, Determining Protein Size Using an Electrochemically Machined Pore Gradient in Silicon. Advanced Functional Material, 2002. 12 (3): p. 187–191.CrossRef Collins, B.E., K.-P.S. Dancil, G. Abbi and M.J. Sailor, Determining Protein Size Using an Electrochemically Machined Pore Gradient in Silicon. Advanced Functional Material, 2002. 12 (3): p. 187–191.CrossRef
39.
go back to reference Bloomfield, V., The Structure of Bovine Serum Albumin at Low pH. Biochemistry, 1966. 5(2): p. 684–689.CrossRef Bloomfield, V., The Structure of Bovine Serum Albumin at Low pH. Biochemistry, 1966. 5(2): p. 684–689.CrossRef
40.
go back to reference Kramers, H.A., Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht), 1940. 7: p. 284–304. Kramers, H.A., Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht), 1940. 7: p. 284–304.
41.
go back to reference Cotton, F.A., J. Edward E. Hazen and M.J. Legg, Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme—thymidine 3′,5′-bisphosphate—calcium ion complex at 1.5-Å resolution Proc. Nati. Acad. Sci. USA, 1979. 76(6): p. 2551–2555. Cotton, F.A., J. Edward E. Hazen and M.J. Legg, Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme—thymidine 3′,5′-bisphosphate—calcium ion complex at 1.5-Å resolution Proc. Nati. Acad. Sci. USA, 1979. 76(6): p. 2551–2555.
42.
go back to reference Tucker, P.W., E.E. Hazen and F.A. Cotton, Staphylococcal nuclease reviewed: A prototypic study in contemporary enzymology Molecular and Cellular Biochemistry, 1979. 23(3). Tucker, P.W., E.E. Hazen and F.A. Cotton, Staphylococcal nuclease reviewed: A prototypic study in contemporary enzymology Molecular and Cellular Biochemistry, 1979. 23(3).
Metadata
Title
Sensing Single Protein Molecules with Solid-State Nanopores
Authors
Bradley Ledden
Daniel Fologea
David S. Talaga
Jiali Li
Copyright Year
2011
Publisher
Springer US
DOI
https://doi.org/10.1007/978-1-4419-8252-0_6