Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 3/2019

10-01-2019

Sensitivity of Crystal Stress Distributions to the Definition of Virtual Two-Phase Samples

Authors: Andrew C. Poshadel, Michael A. Gharghouri, Paul R. Dawson

Published in: Metallurgical and Materials Transactions A | Issue 3/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An extensive set of finite element simulations of crystal stress distributions in the duplex stainless steel, LDX-2101, have been performed to investigate the sensitivity of the simulation output to the definition of the virtual samples. The rolled LDX-2101  material investigated has a microstructure comprising approximately equal volume fractions of ferrite and austenite, with the two phases exhibiting a columnar structure but different grain sizes and morphologies. Two major aspects are thoroughly covered in the sensitivity study—the single-crystal elastic and plastic properties of the two constituent phases, and their spatial arrangement. The simulations are evaluated against experimental data for the macroscopic stress–strain behavior (including strain-rate jump tests) as well as lattice strain data measured by neutron diffraction under in situ  loading. Published values for the austenite and ferrite single-crystal elastic constants performed well, allowing the distribution of stress within the elastic domain and the lattice strain transients in the elastic–plastic transition to be captured with good fidelity. For the plastic parameters, it was found that using identical values for initial slip system strength, hardening rate, and saturation strength for the two phases did as well overall as combinations using different values for the two phases. However, consistent with previous work by others, it was necessary to use significantly different values of strain-rate sensitivity to capture the results of the strain-rate jump tests. Four microstructure types were investigated, ranging from one that incorporates all the principal attributes of the duplex microstructure to one that includes none of them. With the material properties for LDX-2101  that best matched the experimental data, the microstructure had little influence on the results of the simulations—only large differences in phase strengths resulted in significant effects of the microstructure. Based on these results, a simplified microstructure consisting of equiaxed austenite and ferrite grains but retaining major features of the phase structure is justified for this material.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
5.
go back to reference P.R. Dawson and D.E. Boyce: FEpX—Finite Element Polycrystals: theory, finite element formulation, numerical implementation and illustrative examples, arXiv:1504.03296 [cond-mat.mtrl-sci] (2015). P.R. Dawson and D.E. Boyce: FEpX—Finite Element Polycrystals: theory, finite element formulation, numerical implementation and illustrative examples, arXiv:​1504.​03296 [cond-mat.mtrl-sci] (2015).
6.
go back to reference T. Marin, P.R. Dawson, M.A. Gharghouri, R.B. Rogge, Acta Mater., 56, 4183–4199 (2008)CrossRef T. Marin, P.R. Dawson, M.A. Gharghouri, R.B. Rogge, Acta Mater., 56, 4183–4199 (2008)CrossRef
7.
go back to reference T. Marin, P.R. Dawson, M.A. Gharghouri, J. Mech. Phys. Solids, 60, 921–944 (2012)CrossRef T. Marin, P.R. Dawson, M.A. Gharghouri, J. Mech. Phys. Solids, 60, 921–944 (2012)CrossRef
8.
9.
go back to reference R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, E.C. Oliver, Acta Mater., 54, 5027–5039 (2006)CrossRef R. Dakhlaoui, A. Baczmanski, C. Braham, S. Wronski, K. Wierzbanowski, E.C. Oliver, Acta Mater., 54, 5027–5039 (2006)CrossRef
10.
go back to reference R. Dakhlaoui, C. Braham, A. Baczmanski, Mater. Sci. Eng.,A, 444, 6–17 (2007)CrossRef R. Dakhlaoui, C. Braham, A. Baczmanski, Mater. Sci. Eng.,A, 444, 6–17 (2007)CrossRef
11.
go back to reference H. Ledbetter: Handbook of Elastic Properties of Solids, Liquids, and Gases, M. Levy, ed., Academic, New York, 2001, vol. 3, pp. 291–297. H. Ledbetter: Handbook of Elastic Properties of Solids, Liquids, and Gases, M. Levy, ed., Academic, New York, 2001, vol. 3, pp. 291–297.
12.
go back to reference G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed., M.I.T. Press, Cambridge, MA, 1971. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, 2nd ed., M.I.T. Press, Cambridge, MA, 1971.
13.
go back to reference V. Talyan, R.H. Wagoner, J.K. Lee, Metall. Mater. Trans. A, 29A, 2161–2172 (1998)CrossRef V. Talyan, R.H. Wagoner, J.K. Lee, Metall. Mater. Trans. A, 29A, 2161–2172 (1998)CrossRef
15.
16.
go back to reference N. Jia, R.L. Peng, Y.D. Wang, S. Johansson, P.K. Liaw, Acta Mater., 56, 782–793 (2008)CrossRef N. Jia, R.L. Peng, Y.D. Wang, S. Johansson, P.K. Liaw, Acta Mater., 56, 782–793 (2008)CrossRef
17.
go back to reference P. Hedstrom, T.-S. Han, U. Lienert, J. Almer and M. Oden, Acta Mater., 58 734–744 (2010)CrossRef P. Hedstrom, T.-S. Han, U. Lienert, J. Almer and M. Oden, Acta Mater., 58 734–744 (2010)CrossRef
18.
go back to reference R. Quey, P.R. Dawson, F. Barbe, Comput. Methods Appl. Mech. Eng., 200 1729–1745 (2011)CrossRef R. Quey, P.R. Dawson, F. Barbe, Comput. Methods Appl. Mech. Eng., 200 1729–1745 (2011)CrossRef
20.
go back to reference K. Chatterjee, J. Kob, J.J.T. Weiss, H. Philipp, J. Becker, C. Purohit, S. Gruner, A. Beaudoin, J. Mech. Phys. Solids, 109, 95–116 (2017)CrossRef K. Chatterjee, J. Kob, J.J.T. Weiss, H. Philipp, J. Becker, C. Purohit, S. Gruner, A. Beaudoin, J. Mech. Phys. Solids, 109, 95–116 (2017)CrossRef
21.
go back to reference E. Demir, J.-S. Park, M.P. Miller, P.R. Dawson, Comput. Methods Appl. Mech. Eng., 265, 125–135 (2013)CrossRef E. Demir, J.-S. Park, M.P. Miller, P.R. Dawson, Comput. Methods Appl. Mech. Eng., 265, 125–135 (2013)CrossRef
Metadata
Title
Sensitivity of Crystal Stress Distributions to the Definition of Virtual Two-Phase Samples
Authors
Andrew C. Poshadel
Michael A. Gharghouri
Paul R. Dawson
Publication date
10-01-2019
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 3/2019
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-5085-2

Other articles of this Issue 3/2019

Metallurgical and Materials Transactions A 3/2019 Go to the issue

Premium Partners