Skip to main content
Top
Published in: Emission Control Science and Technology 3/2018

15-06-2018 | Special Issue: 2017 CLEERS October 3 - 5, Ann Arbor, MI, USA

Sensitivity of Three-Way Catalyst Light-Off Temperature to Air-Fuel Ratio

Authors: Andrew Bean Getsoian, Joseph R. Theis, Christine K. Lambert

Published in: Emission Control Science and Technology | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The operating conditions of the automotive three-way catalyst (TWC) are characterized by continuous variation of the air-fuel ratio (λ) that determines the composition of the exhaust supplied to the catalyst. It is well known that the ability of the TWC to simultaneously catalyze reduction of NOx and oxidation of CO and hydrocarbons is sensitive to the air-fuel ratio. In efforts to formulate improved TWCs with greater activity at lower temperatures, the impact of air-fuel ratio on light-off temperature must therefore be considered. This paper reports an investigation of the impact of air-fuel ratio on the temperatures at which representative exhaust species in a simulated exhaust mixture reach 90% conversion (T90) over a family of rhodium-based model catalysts, with focus on the performance of a recently developed catalyst comprising rhodium supported on titania-modified alumina with exceptional light-off performance. Over a range of air-fuel ratios 0.977 < λ < 1.005, the T90 for CO is nearly insensitive to λ; the T90 for NO is constant for λ < 0.995 but increases by > 200 °C between 0.995 < λ < 1.001 and 90% conversion is not achieved at any temperature for λ > 1.001; and the T90s for representative hydrocarbons ethylene, propylene, and propane decrease by more than 100 °C between 0.977 < λ < 0.995, then increase again by 30 °C (propylene) to 180 °C (propane) between 0.998 < λ < 1.001. These dramatic shifts in T90 over a small range of air-fuel ratio are attributed to facile conversion of CO and olefins by oxidation, facile conversion of propane by steam reforming, and inhibition of propane steam reforming by both oxygen and CO. Balancing these factors leads to optimal conversion of all exhaust components at an air-fuel ratio λ ~ 0.995.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference 40 CFR Parts 79, 80, 85, 86, 600, 1036, 1037, 1039, 1042, 1048, 1054, 1065, and 1066. Control of air pollution from motor vehicles: tier 3 motor vehicle emission and fuel standards. Federal Register 79, 23414-23886 (2014). Government Publishing Office 40 CFR Parts 79, 80, 85, 86, 600, 1036, 1037, 1039, 1042, 1048, 1054, 1065, and 1066. Control of air pollution from motor vehicles: tier 3 motor vehicle emission and fuel standards. Federal Register 79, 23414-23886 (2014). Government Publishing Office
2.
go back to reference M. Zammit, C. Di Maggio, C. Kim, C. Lambert, C. G. Muntean, G. C. Peden, J. Parks, K. Howden. Future automotive aftertreatment solutions: The 150°C Challenge Workshop Report. (National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.) pdf M. Zammit, C. Di Maggio, C. Kim, C. Lambert, C. G. Muntean, G. C. Peden, J. Parks, K. Howden. Future automotive aftertreatment solutions: The 150°C Challenge Workshop Report. (National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.) pdf
3.
go back to reference Seo, C.Y., Yi, E., Nahata, M., Laine, R.M., Schwank, J.W.: Facile, one-pot synthesis of Pd@CeO2 core@shell nanoparticles in aqueous environment by controlled hydrolysis of metalloorganic cerium precursor. Mater. Lett. 206, 105–108 (2017)CrossRef Seo, C.Y., Yi, E., Nahata, M., Laine, R.M., Schwank, J.W.: Facile, one-pot synthesis of Pd@CeO2 core@shell nanoparticles in aqueous environment by controlled hydrolysis of metalloorganic cerium precursor. Mater. Lett. 206, 105–108 (2017)CrossRef
4.
go back to reference Skoglundh, M., Fridell, E.: Strategies for enhancing low-temperature activity. Top. Catal. 28(1-4), 79–87 (2004)CrossRef Skoglundh, M., Fridell, E.: Strategies for enhancing low-temperature activity. Top. Catal. 28(1-4), 79–87 (2004)CrossRef
5.
go back to reference Binder, J., Toops, T.J., Parks II, J.E., Dai, S.: Low temperature CO oxidation over ternary oxide with high resistance to hydrocarbon inhibition. Angew. Chem. Int. Ed. 54(45), 13263–13267 (2015)CrossRef Binder, J., Toops, T.J., Parks II, J.E., Dai, S.: Low temperature CO oxidation over ternary oxide with high resistance to hydrocarbon inhibition. Angew. Chem. Int. Ed. 54(45), 13263–13267 (2015)CrossRef
7.
go back to reference Chen, H.-Y., Chang, H.-L.: Development of low-temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technology Review. 59(1), 64–67 (2015)CrossRef Chen, H.-Y., Chang, H.-L.: Development of low-temperature three-way catalysts for future fuel efficient vehicles. Johnson Matthey Technology Review. 59(1), 64–67 (2015)CrossRef
8.
go back to reference Shelef, M., McCabe, R.W.: Twenty-five years after introduction of automotive catalysts: what next? Catal. Today. 62(1), 35–50 (2000)CrossRef Shelef, M., McCabe, R.W.: Twenty-five years after introduction of automotive catalysts: what next? Catal. Today. 62(1), 35–50 (2000)CrossRef
9.
go back to reference 40 CFR Part 86. Emission durability procedures for new light-duty vehicles, light-duty trucks and heavy-duty vehicles. Federal Register 69, 17531 (2004). Federal Register 40 CFR Part 86. Emission durability procedures for new light-duty vehicles, light-duty trucks and heavy-duty vehicles. Federal Register 69, 17531 (2004). Federal Register
11.
go back to reference J. Theis, A. Getsoian, C. Lambert. The development of low temperature three-way catalysts for high efficiency gasoline engines of the future: part II. SAE International Journal of Fuels and Lubricants (2018, accepted) J. Theis, A. Getsoian, C. Lambert. The development of low temperature three-way catalysts for high efficiency gasoline engines of the future: part II. SAE International Journal of Fuels and Lubricants (2018, accepted)
12.
go back to reference Advanced Combustion and Emission Control Low Temperature Technical Team. Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation catalyst test protocol. United States Council for Automotive Research: Southfield, MI (2015). https://cleers.org/low-temperature-protocols/ Advanced Combustion and Emission Control Low Temperature Technical Team. Aftertreatment protocols for catalyst characterization and performance evaluation: low-temperature oxidation catalyst test protocol. United States Council for Automotive Research: Southfield, MI (2015). https://​cleers.​org/​low-temperature-protocols/​
14.
go back to reference C. N. Montreuil, S. C. Williams, A. A. Adamczyk. Modeling current generation catalytic converters: laboratory experiments and kinetic parameter optimization—steady state kinetics. Society of Automotive Engineers Technical Paper Series 920096 (1992) C. N. Montreuil, S. C. Williams, A. A. Adamczyk. Modeling current generation catalytic converters: laboratory experiments and kinetic parameter optimization—steady state kinetics. Society of Automotive Engineers Technical Paper Series 920096 (1992)
15.
go back to reference Gopinath, C.S., Zaera, F.: NO+CO+O2 reaction kinetics on Rh(111): a molecular beam study. J. Catal. 200(2), 270–287 (2001)CrossRef Gopinath, C.S., Zaera, F.: NO+CO+O2 reaction kinetics on Rh(111): a molecular beam study. J. Catal. 200(2), 270–287 (2001)CrossRef
16.
go back to reference Granger, P., Dhainaut, F., Pietrzik, S., Malfoy, P., Mamede, A.S., Leclerq, L., Leclerq, G.: An overview: comparative kinetic behaviors of Pt, Rh and Pd in the NO+CO and NO+H2 reactions. Top. Catal. 39(1-2), 65–76 (2006)CrossRef Granger, P., Dhainaut, F., Pietrzik, S., Malfoy, P., Mamede, A.S., Leclerq, L., Leclerq, G.: An overview: comparative kinetic behaviors of Pt, Rh and Pd in the NO+CO and NO+H2 reactions. Top. Catal. 39(1-2), 65–76 (2006)CrossRef
17.
go back to reference Burch, R., Breen, J.P., Meunier, F.C.: A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B Environ. 39(4), 283–303 (2002)CrossRef Burch, R., Breen, J.P., Meunier, F.C.: A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B Environ. 39(4), 283–303 (2002)CrossRef
18.
go back to reference Gustafson, J., Mikkelsen, A., Borg, M., Lundgren, E., Köhler, L., Kresse, G., Schmid, M., Varga, P., Yuhara, J., Torrelles, X., Quirós, C., Andersen, J.N.: Self-limited growth of a thin oxide layer on Rh(111). Phys. Rev. Lett. 92(12), 126102 (2004)CrossRef Gustafson, J., Mikkelsen, A., Borg, M., Lundgren, E., Köhler, L., Kresse, G., Schmid, M., Varga, P., Yuhara, J., Torrelles, X., Quirós, C., Andersen, J.N.: Self-limited growth of a thin oxide layer on Rh(111). Phys. Rev. Lett. 92(12), 126102 (2004)CrossRef
19.
go back to reference Chin, Y.-H., Iglesia, E.: Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH4-O2 reactions on palladium. J. Phys. Chem. C. 115(36), 17845–17855 (2011)CrossRef Chin, Y.-H., Iglesia, E.: Elementary steps, the role of chemisorbed oxygen, and the effects of cluster size in catalytic CH4-O2 reactions on palladium. J. Phys. Chem. C. 115(36), 17845–17855 (2011)CrossRef
20.
go back to reference García-Diéguez, M., Chin, Y.-H., Iglesia, E.: Catalytic reactions of dioxygen with ethane and methane on platinum clusters: mechanistic connections, site requirements, and consequences of chemisorbed oxygen. J. Catal. 285(1), 260–272 (2012)CrossRef García-Diéguez, M., Chin, Y.-H., Iglesia, E.: Catalytic reactions of dioxygen with ethane and methane on platinum clusters: mechanistic connections, site requirements, and consequences of chemisorbed oxygen. J. Catal. 285(1), 260–272 (2012)CrossRef
21.
go back to reference Chin, Y.-H., Buda, C., Neurock, M., Iglesia, E.: Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 135(41), 15425–15442 (2013)CrossRef Chin, Y.-H., Buda, C., Neurock, M., Iglesia, E.: Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 135(41), 15425–15442 (2013)CrossRef
22.
go back to reference Phatak, A., Koryabkina, N., Rai, S., Ratts, J.L., Ruettinger, W., Farrauto, R.J., Blau, G.E., Delgass, W.N., Ribeiro, F.H.: Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria. Catal. Today. 123(1-4), 224–234 (2007)CrossRef Phatak, A., Koryabkina, N., Rai, S., Ratts, J.L., Ruettinger, W., Farrauto, R.J., Blau, G.E., Delgass, W.N., Ribeiro, F.H.: Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria. Catal. Today. 123(1-4), 224–234 (2007)CrossRef
23.
go back to reference Grabow, L.C., Gokhale, A.A., Evans, S.T., Dumesic, J.A., Mavrikakis, M.: Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J. Phys. Chem. C. 112(12), 4608–4617 (2008)CrossRef Grabow, L.C., Gokhale, A.A., Evans, S.T., Dumesic, J.A., Mavrikakis, M.: Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J. Phys. Chem. C. 112(12), 4608–4617 (2008)CrossRef
Metadata
Title
Sensitivity of Three-Way Catalyst Light-Off Temperature to Air-Fuel Ratio
Authors
Andrew Bean Getsoian
Joseph R. Theis
Christine K. Lambert
Publication date
15-06-2018
Publisher
Springer International Publishing
Published in
Emission Control Science and Technology / Issue 3/2018
Print ISSN: 2199-3629
Electronic ISSN: 2199-3637
DOI
https://doi.org/10.1007/s40825-018-0089-3

Other articles of this Issue 3/2018

Emission Control Science and Technology 3/2018 Go to the issue

Premium Partner