Skip to main content
Top
Published in: Wireless Networks 8/2014

01-11-2014

Sensor and gateway location optimization in body sensor networks

Author: Mari Carmen Domingo

Published in: Wireless Networks | Issue 8/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In body sensor networks (BSNs), energy-constrained sensors monitor the vital signs of human beings in healthcare applications. Energy consumption is a fundamental issue, since BSNs must operate properly and autonomously for long period of time without battery recharge or replacement. In addition, the human exposure to electromagnetic radiation must be limited. For all these reasons, the energy consumption in BSNs should be minimized. In this paper, sensor and gateway location optimization for BSNs has been analyzed. A mathematical model has been proposed to minimize the energy consumption of the BSN and the heating effects on human tissues. We distinguish between ‘in-body’ and ‘on-body’ sensors depending on their location inside or outside the human body, respectively. The theoretical analysis and the numerical results reveal that in in-BSNs the energy consumption can be significantly reduced when the optimal positions of the gateway or the sensors are computed. However, in on-BSNs the energy consumption is not affected by the devices’ location. With power control the interferences are minimized and the human exposure to electromagnetic radiation is reduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Crosby, G. V., Ghosh, T., Murimi, R., & Chin, C. A. (2012). Wireless body area networks for healthcare: a survey. International Journal of Ad hoc, Sensor and Ubiquitous Computing (IJASUC), 3(3), 1–26.CrossRef Crosby, G. V., Ghosh, T., Murimi, R., & Chin, C. A. (2012). Wireless body area networks for healthcare: a survey. International Journal of Ad hoc, Sensor and Ubiquitous Computing (IJASUC), 3(3), 1–26.CrossRef
2.
go back to reference Chen, Y., Teo, J., Lai, J. C. Y., Gunawan, E., Low, K. S., Soh, Ch B, et al. (2009). Cooperative communications in ultra-wideband wireless body area networks: channel modeling and system diversity analysis. IEEE Journal on Selected Areas in Communications, 27(1), 5–16.CrossRef Chen, Y., Teo, J., Lai, J. C. Y., Gunawan, E., Low, K. S., Soh, Ch B, et al. (2009). Cooperative communications in ultra-wideband wireless body area networks: channel modeling and system diversity analysis. IEEE Journal on Selected Areas in Communications, 27(1), 5–16.CrossRef
3.
go back to reference Natarajan, A., Motani, M., De Silva, B., Yap, K.-K., & Chua, K. C. (2007). Investigating network architectures for body sensor networks. New York, USA: In Proc. of Health Net. Natarajan, A., Motani, M., De Silva, B., Yap, K.-K., & Chua, K. C. (2007). Investigating network architectures for body sensor networks. New York, USA: In Proc. of Health Net.
4.
go back to reference Latré, B., Braem, B., Blondia, C., Moerman, I., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.CrossRef Latré, B., Braem, B., Blondia, C., Moerman, I., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.CrossRef
5.
go back to reference Zhen, B., Patel, M., Lee, S., Won, E., and Astrin, A. (2008). TG6 Technical requirements document (TRD) ID: 802.15-08-0644. IEEE Submission. Zhen, B., Patel, M., Lee, S., Won, E., and Astrin, A. (2008). TG6 Technical requirements document (TRD) ID: 802.15-08-0644. IEEE Submission.
6.
go back to reference Melodia, T., Pompili, D., and Akyildiz, I.F. A Communication Architecture for Mobile Wireless Sensor and Actor Networks. In Proc. of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON ‘06), Sept. 2006. Melodia, T., Pompili, D., and Akyildiz, I.F. A Communication Architecture for Mobile Wireless Sensor and Actor Networks. In Proc. of the 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks (SECON ‘06), Sept. 2006.
7.
go back to reference Xu, W., Zhang, M., Sawchuk, A. A., & Sarrafzadeh, M. (2012). Robust human activity and sensor location corecognition via sparse signal representation. IEEE Transactions on Biomedical Engineering, 59(11), 3169–3176.CrossRef Xu, W., Zhang, M., Sawchuk, A. A., & Sarrafzadeh, M. (2012). Robust human activity and sensor location corecognition via sparse signal representation. IEEE Transactions on Biomedical Engineering, 59(11), 3169–3176.CrossRef
8.
go back to reference Shah R.C., and Yarvis M. Characteristics of on-body 802.15.4 Networks. In Proc. of WiMesh, Sept. 2006. Shah R.C., and Yarvis M. Characteristics of on-body 802.15.4 Networks. In Proc. of WiMesh, Sept. 2006.
9.
go back to reference Oliveira C., Pedrosa L., and Rocha R.M. Characterizing On-body wireless sensor networks. In Proc. of NTMS, Nov. 2008. Oliveira C., Pedrosa L., and Rocha R.M. Characterizing On-body wireless sensor networks. In Proc. of NTMS, Nov. 2008.
10.
go back to reference Yang W.-B., Sayrafian-Pour K., Hagedorn J., Terrill J., and Yazdandoost K.Y. Simulation study of body surface RF propagation for UWB wearable medical sensors. In Proc. of ISABEL, Nov. 2009. Yang W.-B., Sayrafian-Pour K., Hagedorn J., Terrill J., and Yazdandoost K.Y. Simulation study of body surface RF propagation for UWB wearable medical sensors. In Proc. of ISABEL, Nov. 2009.
11.
go back to reference Amini, N., Sarrafzadeh, M., Vahdatpour, A., & Xu, W. (2011). Accelerometer-based on-body sensor localization for health and medical monitoring applications. Pervasive and Mobile Computing, 7, 746–760.CrossRef Amini, N., Sarrafzadeh, M., Vahdatpour, A., & Xu, W. (2011). Accelerometer-based on-body sensor localization for health and medical monitoring applications. Pervasive and Mobile Computing, 7, 746–760.CrossRef
12.
go back to reference Atallah, L., Lo, B., King, R., & Yang, G.-Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.CrossRef Atallah, L., Lo, B., King, R., & Yang, G.-Z. (2011). Sensor positioning for activity recognition using wearable accelerometers. IEEE Transactions on Biomedical Circuits and Systems, 5(4), 320–329.CrossRef
13.
go back to reference Min, Ch-H, Tewfik, A. H., Kim, Y., & Menard, R. (2009). Optimal sensor location for body sensor network to detect self-stimulatory behaviors of children with autism spectrum disorder. Sept: In Proc. of EMBC. Min, Ch-H, Tewfik, A. H., Kim, Y., & Menard, R. (2009). Optimal sensor location for body sensor network to detect self-stimulatory behaviors of children with autism spectrum disorder. Sept: In Proc. of EMBC.
14.
go back to reference Patterson, J.A.C., McIlwraith, D.G., and Yang, G.-Z. A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring. In Proc. of BSN, June 2009. Patterson, J.A.C., McIlwraith, D.G., and Yang, G.-Z. A Flexible, Low Noise Reflective PPG Sensor Platform for Ear-Worn Heart Rate Monitoring. In Proc. of BSN, June 2009.
15.
go back to reference Zhao, G., Mei, Z., Liang, D., Ivanov, K., Guo, Y., Wang, Y., et al. (2012). Exploration and implementation of a pre-impact fall recognition method based on an inertial body sensor network. Sensors (Basel), 12(11), 15338–15355.CrossRef Zhao, G., Mei, Z., Liang, D., Ivanov, K., Guo, Y., Wang, Y., et al. (2012). Exploration and implementation of a pre-impact fall recognition method based on an inertial body sensor network. Sensors (Basel), 12(11), 15338–15355.CrossRef
16.
go back to reference Atallah, L., Aziz, O., Lo, B., and Yang, G.-Z., Detecting Walking Gait Impairment with an Ear-worn Sensor, in Proc. of BSN, June 2009. Atallah, L., Aziz, O., Lo, B., and Yang, G.-Z., Detecting Walking Gait Impairment with an Ear-worn Sensor, in Proc. of BSN, June 2009.
17.
go back to reference Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(1), 16–23.CrossRef Jovanov, E., Milenkovic, A., Otto, C., & de Groen, P. C. (2005). A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2(1), 16–23.CrossRef
19.
go back to reference Reusens, E., Joseph, W., Latré, B., Braem, B., Vermeeren, G., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions of Information Technology in Biomedicine, 13(6), 933–945.CrossRef Reusens, E., Joseph, W., Latré, B., Braem, B., Vermeeren, G., Tanghe, E., et al. (2009). Characterization of on-body communication channel and energy efficient topology design for wireless body area networks. IEEE Transactions of Information Technology in Biomedicine, 13(6), 933–945.CrossRef
20.
go back to reference Takizawa, K., Aoyagi, T., and Kohno, R. Channel Modeling and Performance Evaluation of UWB-based Wireless Body Area Networks. In Proc. of ICC 2009, June 2009. Takizawa, K., Aoyagi, T., and Kohno, R. Channel Modeling and Performance Evaluation of UWB-based Wireless Body Area Networks. In Proc. of ICC 2009, June 2009.
21.
go back to reference Yazdandoost, K.Y., and Sayrafian-Pour, K. Channel Model for Body Area Network (BAN). Report to the IEEE P802.15, ID: IEEE P802.15-08-0780-12-0006, November 2010. Yazdandoost, K.Y., and Sayrafian-Pour, K. Channel Model for Body Area Network (BAN). Report to the IEEE P802.15, ID: IEEE P802.15-08-0780-12-0006, November 2010.
22.
go back to reference Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large scale nonlinear programming. SIAM Journal of Optimization, 9, 877–900.MathSciNetCrossRefMATH Byrd, R. H., Hribar, M. E., & Nocedal, J. (1999). An interior point algorithm for large scale nonlinear programming. SIAM Journal of Optimization, 9, 877–900.MathSciNetCrossRefMATH
23.
go back to reference Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1), 99–131.MathSciNetCrossRefMATH Gill, P. E., Murray, W., & Saunders, M. A. (2005). SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Review, 47(1), 99–131.MathSciNetCrossRefMATH
26.
go back to reference Sasamori, T., Satoh, Y., Tobana, T., Isota, Y., Takahashi, M., and Uno T. Bit Error rate performance of wireless body area network system. In Proc. of IEEE Antennas and Propagation Society International Symposium (APSURSI), July 2010. Sasamori, T., Satoh, Y., Tobana, T., Isota, Y., Takahashi, M., and Uno T. Bit Error rate performance of wireless body area network system. In Proc. of IEEE Antennas and Propagation Society International Symposium (APSURSI), July 2010.
27.
go back to reference Seunghyun, Oh, and Wentzloff, D.D. Portable hardware for real-time channel estimation on wireless body Area networks. In Proc. of Biomedical Circuits and Systems Conference (BioCAS), Nov. 2011. Seunghyun, Oh, and Wentzloff, D.D. Portable hardware for real-time channel estimation on wireless body Area networks. In Proc. of Biomedical Circuits and Systems Conference (BioCAS), Nov. 2011.
28.
go back to reference Hsieh, C.-H., Su M.Y., Kung, J.-Y., Lee S.-Y., and Fang, Q. Low-power 13.56 MHz RF Front-end Circuit for Body Sensor Network, In Proc. of International Symposium on Bioelectronics and Bioinformatics (ISBB), Nov. 2011. Hsieh, C.-H., Su M.Y., Kung, J.-Y., Lee S.-Y., and Fang, Q. Low-power 13.56 MHz RF Front-end Circuit for Body Sensor Network, In Proc. of International Symposium on Bioelectronics and Bioinformatics (ISBB), Nov. 2011.
29.
go back to reference Chen, X., Lu, X., Jin, D., Su, Li, and Zeng, L. Channel modeling of UWB-based wireless body area networks, In Proc. of IEEE International Conference on Communications (ICC), June 2011. Chen, X., Lu, X., Jin, D., Su, Li, and Zeng, L. Channel modeling of UWB-based wireless body area networks, In Proc. of IEEE International Conference on Communications (ICC), June 2011.
Metadata
Title
Sensor and gateway location optimization in body sensor networks
Author
Mari Carmen Domingo
Publication date
01-11-2014
Publisher
Springer US
Published in
Wireless Networks / Issue 8/2014
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-014-0745-7

Other articles of this Issue 8/2014

Wireless Networks 8/2014 Go to the issue