Skip to main content
Top
Published in: Structural and Multidisciplinary Optimization 5/2018

21-06-2018 | RESEARCH PAPER

Sensor placement optimization applied to laminated composite plates under vibration

Authors: Guilherme Ferreira Gomes, Sebastiao Simões da Cunha Jr., Patricia da Silva Lopes Alexandrino, Bruno Silva de Sousa, Antonio Carlos Ancelotti Jr.

Published in: Structural and Multidisciplinary Optimization | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The location optimization of sensors is a essential problem in structural health monitoring systems. Taking the cost of sensors into account, it is uneconomical to install sensors on every part of a structure and moreover in aeronautical industry, the weight is a crucial factor. In this paper, a optimal placement optimization of sensor locations for structural health monitoring systems is studied. Several techniques of optimization of sensors are approached and applied in a shell structure. The structure, a laminate of carbon fiber, was modeled by the finite element method (FEM) and then subject to free vibration. Genetic algorithms (GAs) are then employed to locate the best sensor distribution to cover a specific number of low frequency modes. Numerical results have demonstrated the overall efficiency of sensor delivery methods. Specific problems occurred, especially regarding the method of effective independence, being less efficient and discrepant in relation to the other methods employed. In summary, the results obtained in this paper provide an optimal position for sensors in real SHM systems and experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bakhary N, Hao H, Deeks AJ (2007) Damage detection using artificial neural network with consideration of uncertainties. Eng Struct 29(11):2806–2815CrossRef Bakhary N, Hao H, Deeks AJ (2007) Damage detection using artificial neural network with consideration of uncertainties. Eng Struct 29(11):2806–2815CrossRef
go back to reference Bandara RP, Chan TH, Thambiratnam DP (2014) Structural damage detection method using frequency response functions. Struct Health Monit 13(4):418–429CrossRef Bandara RP, Chan TH, Thambiratnam DP (2014) Structural damage detection method using frequency response functions. Struct Health Monit 13(4):418–429CrossRef
go back to reference Barthorpe RJ, Worden K (2009) Sensor placement optimization. Encyclopedia of Structural Health Monitoring Barthorpe RJ, Worden K (2009) Sensor placement optimization. Encyclopedia of Structural Health Monitoring
go back to reference Beygzadeh S, Salajegheh E, Torkzadeh P, Salajegheh J, Naseralavi SS (2014) An improved genetic algorithm for optimal sensor placement in space structures damage detection. Int J Space Struct 29(3):121–136CrossRef Beygzadeh S, Salajegheh E, Torkzadeh P, Salajegheh J, Naseralavi SS (2014) An improved genetic algorithm for optimal sensor placement in space structures damage detection. Int J Space Struct 29(3):121–136CrossRef
go back to reference Boller C (2000) Next generation structural health monitoring and its integration into aircraft design. Int J Syst Sci 31(11):1333–1349CrossRef Boller C (2000) Next generation structural health monitoring and its integration into aircraft design. Int J Syst Sci 31(11):1333–1349CrossRef
go back to reference Borissova D, Mustakerov I, Doukovska L (2012) Predictive maintenance sensors placement by combinatorial optimization. Int J Electron Telecommun 58(2):153–158CrossRef Borissova D, Mustakerov I, Doukovska L (2012) Predictive maintenance sensors placement by combinatorial optimization. Int J Electron Telecommun 58(2):153–158CrossRef
go back to reference Bussieck MR, Pruessner A (2003) Mixed-integer nonlinear programming. SIAG/OPT Newslett: Views News 14(1):19–22 Bussieck MR, Pruessner A (2003) Mixed-integer nonlinear programming. SIAG/OPT Newslett: Views News 14(1):19–22
go back to reference Chisari C, Macorini L, Amadio C, Izzuddin BA (2017) Optimal sensor placement for structural parameter identification. Struct Multidiscip Optim 55(2):647–662MathSciNetCrossRef Chisari C, Macorini L, Amadio C, Izzuddin BA (2017) Optimal sensor placement for structural parameter identification. Struct Multidiscip Optim 55(2):647–662MathSciNetCrossRef
go back to reference Coote J, Lieven N, Skingle G (2005) Sensor placement optimisation for modal testing of a helicopter fuselage. In: Proceedings of the 24th international modal analysis conference (IMAC-XXIII). Orlando Coote J, Lieven N, Skingle G (2005) Sensor placement optimisation for modal testing of a helicopter fuselage. In: Proceedings of the 24th international modal analysis conference (IMAC-XXIII). Orlando
go back to reference Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review Doebling SW, Farrar CR, Prime MB, Shevitz DW (1996) Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review
go back to reference Fadale T, Nenarokomov A, Emery AF (1995) Two approaches to optimal sensor locations. J Heat Transf 117(2):373–379CrossRef Fadale T, Nenarokomov A, Emery AF (1995) Two approaches to optimal sensor locations. J Heat Transf 117(2):373–379CrossRef
go back to reference Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83– 111CrossRef Fan W, Qiao P (2011) Vibration-based damage identification methods: a review and comparative study. Struct Health Monit 10(1):83– 111CrossRef
go back to reference Farrar CR, Doebling SW (1997) An overview of modal-based damage identification methods. Technical report, Los Alamos National Lab. Farrar CR, Doebling SW (1997) An overview of modal-based damage identification methods. Technical report, Los Alamos National Lab.
go back to reference Fendzi C, Morel J, Rebillat M, Guskov M, Mechbal N, Coffignal G (2014) Optimal sensors placement to enhance damage detection in composite plates. In: 7th European Workshop on structural health monitoring, pp. 1–8 Fendzi C, Morel J, Rebillat M, Guskov M, Mechbal N, Coffignal G (2014) Optimal sensors placement to enhance damage detection in composite plates. In: 7th European Workshop on structural health monitoring, pp. 1–8
go back to reference Ganguli R, Viswamurthy S, Thakkar D (2016) Smart helicopter rotors. Springer Ganguli R, Viswamurthy S, Thakkar D (2016) Smart helicopter rotors. Springer
go back to reference Gomes GF (2017) Otimizaċão da Identificaċão de Danos Estruturais por meio de Inteligência Computacional e Dados Modais.PhD thesis Federal University of Itajubá Gomes GF (2017) Otimizaċão da Identificaċão de Danos Estruturais por meio de Inteligência Computacional e Dados Modais.PhD thesis Federal University of Itajubá
go back to reference Gomes GF, Diniz CA, da Cunha SS, Ancelotti AC (2017) Design optimization of composite prosthetic tubes using ga-ann algorithm considering tsai-wu failure criteria. J Fail Anal Prev 17(4):740–749CrossRef Gomes GF, Diniz CA, da Cunha SS, Ancelotti AC (2017) Design optimization of composite prosthetic tubes using ga-ann algorithm considering tsai-wu failure criteria. J Fail Anal Prev 17(4):740–749CrossRef
go back to reference Gomes GF, Mendéz YAD, da Cunha SS, Ancelotti AC (2018) A numerical–experimental study for structural damage detection in cfrp plates using remote vibration measurements. J Civ Struct Heal Monit 8(1):33–47CrossRef Gomes GF, Mendéz YAD, da Cunha SS, Ancelotti AC (2018) A numerical–experimental study for structural damage detection in cfrp plates using remote vibration measurements. J Civ Struct Heal Monit 8(1):33–47CrossRef
go back to reference Gopalakrishnan S, Ruzzene M, Hanagud S (2011) Computational techniques for damage detection, classification and quantification. In: Computational Techniques for structural health monitoring. Springer, pp 407–461 Gopalakrishnan S, Ruzzene M, Hanagud S (2011) Computational techniques for damage detection, classification and quantification. In: Computational Techniques for structural health monitoring. Springer, pp 407–461
go back to reference Gu G, Zhao Y, Zhang X (2016) Optimal layout of sensors on wind turbine blade based on combinational algorithm. International Journal of Distributed Sensor Networks Gu G, Zhao Y, Zhang X (2016) Optimal layout of sensors on wind turbine blade based on combinational algorithm. International Journal of Distributed Sensor Networks
go back to reference Guo H, Zhang L, Zhang L, Zhou J (2004) Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Mater Struct 13(3):528CrossRef Guo H, Zhang L, Zhang L, Zhou J (2004) Optimal placement of sensors for structural health monitoring using improved genetic algorithms. Smart Mater Struct 13(3):528CrossRef
go back to reference Haftka RT (2016) Requirements for papers focusing on new or improved global optimization algorithms. Struct Multidisc Optim 54(1):1–1CrossRef Haftka RT (2016) Requirements for papers focusing on new or improved global optimization algorithms. Struct Multidisc Optim 54(1):1–1CrossRef
go back to reference Holland J, Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading Holland J, Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading
go back to reference Jung B, Cho J, Jeong W (2015) Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm. J Mech Sci Technol 29(7):2775–2783CrossRef Jung B, Cho J, Jeong W (2015) Sensor placement optimization for structural modal identification of flexible structures using genetic algorithm. J Mech Sci Technol 29(7):2775–2783CrossRef
go back to reference Kammer DC (1991) Sensor placement for on-orbit modal identification and correlation of large space structures. J Guid Control Dyn 14(2):251–259CrossRef Kammer DC (1991) Sensor placement for on-orbit modal identification and correlation of large space structures. J Guid Control Dyn 14(2):251–259CrossRef
go back to reference Kammer DC, Tinker ML (2004) Optimal placement of triaxial accelerometers for modal vibration tests. Mech Syst Signal Process 18(1):29–41CrossRef Kammer DC, Tinker ML (2004) Optimal placement of triaxial accelerometers for modal vibration tests. Mech Syst Signal Process 18(1):29–41CrossRef
go back to reference Meo M, Zumpano G (2008) Damage assessment on plate-like structures using a global-local optimization approach. Optim Eng 9(2):161–177MathSciNetCrossRef Meo M, Zumpano G (2008) Damage assessment on plate-like structures using a global-local optimization approach. Optim Eng 9(2):161–177MathSciNetCrossRef
go back to reference Padula SL, Kincaid RK (1999) Optimization strategies for sensor and actuator placement Padula SL, Kincaid RK (1999) Optimization strategies for sensor and actuator placement
go back to reference Papadopoulos M, Garcia E (1998) Sensor placement methodologies for dynamic testing. AIAA J 36 (2):256–263CrossRef Papadopoulos M, Garcia E (1998) Sensor placement methodologies for dynamic testing. AIAA J 36 (2):256–263CrossRef
go back to reference Papadopoulou M, Raphael B, Smith IF, Sekhar C (2014) Hierarchical sensor placement using joint entropy and the effect of modeling error. Entropy 16(9):5078–5101CrossRef Papadopoulou M, Raphael B, Smith IF, Sekhar C (2014) Hierarchical sensor placement using joint entropy and the effect of modeling error. Entropy 16(9):5078–5101CrossRef
go back to reference Penny J, Friswell M, Garvey S (1994) Automatic choice of measurement locations for dynamic testing. AIAA J 32(2):407–414CrossRef Penny J, Friswell M, Garvey S (1994) Automatic choice of measurement locations for dynamic testing. AIAA J 32(2):407–414CrossRef
go back to reference Rao ARM, Anandakumar G (2007) Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique. Smart Mater Struct 16(6):2658CrossRef Rao ARM, Anandakumar G (2007) Optimal placement of sensors for structural system identification and health monitoring using a hybrid swarm intelligence technique. Smart Mater Struct 16(6):2658CrossRef
go back to reference Rao ARM, Lakshmi K, Krishnakumar S (2014) A generalized optimal sensor placement technique for structural health monitoring and system identification. Procedia Eng 86:529–538CrossRef Rao ARM, Lakshmi K, Krishnakumar S (2014) A generalized optimal sensor placement technique for structural health monitoring and system identification. Procedia Eng 86:529–538CrossRef
go back to reference Rao ARM, Lakshmi K, Kumar SK (2015) Detection of delamination in laminated composites with limited measurements combining pca and dynamic qpso. Adv Eng Softw 86:85–106CrossRef Rao ARM, Lakshmi K, Kumar SK (2015) Detection of delamination in laminated composites with limited measurements combining pca and dynamic qpso. Adv Eng Softw 86:85–106CrossRef
go back to reference Shi Z, Law S, Zhang L (2000) Optimum sensor placement for structural damage detection. J Eng Mech 126(11):1173– 1179CrossRef Shi Z, Law S, Zhang L (2000) Optimum sensor placement for structural damage detection. J Eng Mech 126(11):1173– 1179CrossRef
go back to reference Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR, Czarnecki JJ (2003) A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory Sohn H, Farrar CR, Hemez FM, Shunk DD, Stinemates DW, Nadler BR, Czarnecki JJ (2003) A review of structural health monitoring literature: 1996–2001. Los Alamos National Laboratory
go back to reference Staszewski WJ, Worden K (2001) Overview of optimal sensor location methods for damage detection. In: Smart Structures and materials 2001: modeling, signal processing, and control in smart structures, vol 4326. International Society for Optics and Photonics, pp 179–188 Staszewski WJ, Worden K (2001) Overview of optimal sensor location methods for damage detection. In: Smart Structures and materials 2001: modeling, signal processing, and control in smart structures, vol 4326. International Society for Optics and Photonics, pp 179–188
go back to reference Staszewski W, Boller C, Tomlinson GR (2004) Health monitoring of aerospace structures: smart sensor technologies and signal processing. Wiley Staszewski W, Boller C, Tomlinson GR (2004) Health monitoring of aerospace structures: smart sensor technologies and signal processing. Wiley
go back to reference Stepinski T, Uhl T, Staszewski W (2013) Advanced structural damage detection: from theory to engineering applications. Wiley Stepinski T, Uhl T, Staszewski W (2013) Advanced structural damage detection: from theory to engineering applications. Wiley
go back to reference Worden K, Burrows A (2001) Optimal sensor placement for fault detection. Eng Struct 23(8):885–901CrossRef Worden K, Burrows A (2001) Optimal sensor placement for fault detection. Eng Struct 23(8):885–901CrossRef
go back to reference Zaher MSAA (2003) An integrated vibration-based structural health monitoring system Zaher MSAA (2003) An integrated vibration-based structural health monitoring system
go back to reference Zhang Q, Jankowski Ł, Duan Z (2010) Simultaneous identification of moving masses and structural damage. Struct Multidiscip Optim 42(6):907–922CrossRef Zhang Q, Jankowski Ł, Duan Z (2010) Simultaneous identification of moving masses and structural damage. Struct Multidiscip Optim 42(6):907–922CrossRef
go back to reference Zhou K, Wu ZY, Yi XH, Zhu DP, Narayan R, Zhao J (2017) Generic framework of sensor placement optimization for structural health modeling. Journal of Computing in Civil Engineering Zhou K, Wu ZY, Yi XH, Zhu DP, Narayan R, Zhao J (2017) Generic framework of sensor placement optimization for structural health modeling. Journal of Computing in Civil Engineering
go back to reference Zhu L, Dai J, Bai G (2015) Sensor placement optimization of vibration test on medium-speed mill. Shock Vib:2015 Zhu L, Dai J, Bai G (2015) Sensor placement optimization of vibration test on medium-speed mill. Shock Vib:2015
Metadata
Title
Sensor placement optimization applied to laminated composite plates under vibration
Authors
Guilherme Ferreira Gomes
Sebastiao Simões da Cunha Jr.
Patricia da Silva Lopes Alexandrino
Bruno Silva de Sousa
Antonio Carlos Ancelotti Jr.
Publication date
21-06-2018
Publisher
Springer Berlin Heidelberg
Published in
Structural and Multidisciplinary Optimization / Issue 5/2018
Print ISSN: 1615-147X
Electronic ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2024-1

Other articles of this Issue 5/2018

Structural and Multidisciplinary Optimization 5/2018 Go to the issue

Premium Partners