Skip to main content
Top
Published in:

12-10-2022

Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis

Authors: Astha Modi, Khelan Shah, Shrey Shah, Samir Patel, Manan Shah

Published in: Annals of Data Science | Issue 1/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this challenging world, social media plays a vital role as it is at the pinnacle of data sharing. The advancement in technology has made a huge amount of information available for data analysis and it is on the hotlist nowadays. Opinions of the people are expressed and shared across various social media platforms like Twitter, Facebook, and Instagram. Twitter is a prodigious platform containing an ample amount of data and analyzing the data is of topmost priority. One of the most widely utilized approaches for classifying an individual’s emotions displayed in subjective data is sentiment analysis. Sentiment analysis is done using various algorithms of machine learning like Support Vector Machine, Naive Bayes, Long Short-Term Memory, Decision Tree Classifier, and many more, but this paper aims at the generalized way of performing Twitter sentiment analysis using flask environment. Flask environment provides various inbuilt functionalities to analyze the sentiments of text into three different categories: positive, negative, and neutral. Also, it makes API calls to the Twitter Developer account to fetch the Twitter data. After fetching and analyzing the data, the results get displayed on a webpage containing the percentage of positive, negative, and neutral tweets for a phrase in a pie chart. It displays the language analysis for the same phrase. Furthermore, the webpage calls attention to the tweets done on that phrase and reveals the details of the tweets. Considering the major industry runners of three different sectors namely Enterprises, Sports Apparel Industry, and Multimedia Industry, we have analyzed and compared sentiments of two different Multinational companies from each sector.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization-based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian YJ, Kou G, Peng Y, Li JP (2011) Optimization-based data mining: theory and applications. Springer, BerlinCrossRef
3.
go back to reference Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
4.
go back to reference Shi Y (2022) Advances in big data analytics: theory, algorithm, and practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory, algorithm, and practice. Springer, SingaporeCrossRef
5.
go back to reference Güven ZA, Diri B, Çakaloğlu T. Comparison Method for Emotion Detection of Twitter Users. In2019 Innovations in Intelligent Systems and Applications Conference (ASYU) 2019 (pp. 1-5). IEEE. Güven ZA, Diri B, Çakaloğlu T. Comparison Method for Emotion Detection of Twitter Users. In2019 Innovations in Intelligent Systems and Applications Conference (ASYU) 2019 (pp. 1-5). IEEE.
17.
go back to reference Kasthuri S, Jebaseeli AN (2020) An efficient decision tree algorithm for analyzing the twitter sentiment analysis. J Crit Rev 7(4):1010–1018 Kasthuri S, Jebaseeli AN (2020) An efficient decision tree algorithm for analyzing the twitter sentiment analysis. J Crit Rev 7(4):1010–1018
22.
go back to reference Kumar Singh S, Verma P, Kumar P, Abdul A (2020) J Crit Rev Sentim Anal Covid-19 Epidemic Mach Learn Algorithms Twitter 7:2020 Kumar Singh S, Verma P, Kumar P, Abdul A (2020) J Crit Rev Sentim Anal Covid-19 Epidemic Mach Learn Algorithms Twitter 7:2020
23.
go back to reference Deshpande P, Joshi P, Madekar D et al (2019) A survey on: classification of Twitter data using sentiment analysis. Asian J Converg Technol 5:34–37 Deshpande P, Joshi P, Madekar D et al (2019) A survey on: classification of Twitter data using sentiment analysis. Asian J Converg Technol 5:34–37
24.
go back to reference Kavitha P (2021) Twitter sentiment analysis based on adaptive deep recurrent neural network. Turk J Comput Math Educ (TURCOMAT) 12:2449–2457 Kavitha P (2021) Twitter sentiment analysis based on adaptive deep recurrent neural network. Turk J Comput Math Educ (TURCOMAT) 12:2449–2457
30.
go back to reference Kolchyna O, Souza TTP, Treleaven P, Aste T (2015) Twitter sentiment analysis: Lexicon method, machine learning method and their combination Kolchyna O, Souza TTP, Treleaven P, Aste T (2015) Twitter sentiment analysis: Lexicon method, machine learning method and their combination
Metadata
Title
Sentiment Analysis of Twitter Feeds Using Flask Environment: A Superior Application of Data Analysis
Authors
Astha Modi
Khelan Shah
Shrey Shah
Samir Patel
Manan Shah
Publication date
12-10-2022
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science / Issue 1/2024
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-022-00445-1

Premium Partner