Skip to main content
Top

05-12-2024 | Original Article

Sentiment-Based Hierarchical Deep Learning Framework Using Hybrid Optimization for Course Recommendation in E-learning

Authors: A. Madhavi, A. Nagesh, A. Govardhan

Published in: Annals of Data Science

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Course recommendation (CD) is essential for success in a student’s educational journey. Due to the variations in student’s knowledge system, it might be difficult to select the course content from online educational platforms. This problem is overcome by introducing the Political Jellyfish search optimization (PJSO) based Hierarchical Deep Learning for Text (HDLTex) model for sentiment classification (SC) in CD. Here, the input data is taken from the E-khool database, which is subjected to the learner/course agglomerative matrix calculation. Then, the course is grouped by utilizing Bayesian Fuzzy clustering (BFC). When the query is given, bi-level matching is performed. The learner retrieves the preferred items after the best course group is found. Furthermore, course review data is applied to the tokenization process employing Bidirectional Encoder Representations from Transformers (BERT). Finally, the feature extraction is carried out and SC is performed by using HDLTex, which is trained by the proposed PJSO. Moreover, the PJSO is the incorporation of Political Optimizer (PO) and Jellyfish Search Optimization (JSO). The devised PJSO-based HDLTex has a superior assessment for maximum precision of 0.904, maximum recall of 0.915 and maximum F-Measure of 0.904 respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
4.
go back to reference Olson, Louis D, Shi Y, Shi Y (2007) Introduction to business data mining. 10. McGraw-Hill/Irwin, New York Olson, Louis D, Shi Y, Shi Y (2007) Introduction to business data mining. 10. McGraw-Hill/Irwin, New York
17.
go back to reference Almatrafi O, Parack S, Chavan B (2015) Application of location-based sentiment analysis using Twitter for identifying trends towards Indian general elections 2014. In: Proceedings of the 9th international conference on ubiquitous information management and communication. https://doi.org/10.1145/27011262701129 Almatrafi O, Parack S, Chavan B (2015) Application of location-based sentiment analysis using Twitter for identifying trends towards Indian general elections 2014. In: Proceedings of the 9th international conference on ubiquitous information management and communication. https://​doi.​org/​10.​1145/​27011262701129
25.
go back to reference Yang L, Li Y, Wang J, Sherratt RS (2020) Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 8:23522–23530CrossRef Yang L, Li Y, Wang J, Sherratt RS (2020) Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE Access 8:23522–23530CrossRef
26.
go back to reference Chugh A, Sharma VK, Kumar S, Nayyar A, Qureshi B, Bhatia MK, Jain C (2021) Spider monkey crow optimization algorithm with deep learning for sentiment classification and information retrieval. IEEE Access 9:24249–24262CrossRef Chugh A, Sharma VK, Kumar S, Nayyar A, Qureshi B, Bhatia MK, Jain C (2021) Spider monkey crow optimization algorithm with deep learning for sentiment classification and information retrieval. IEEE Access 9:24249–24262CrossRef
29.
go back to reference Zamri N, Palanichamy N, Haw S (2023) College course recommender system based on sentiment analysis. Int J Adv Sci Eng 13:1984 Zamri N, Palanichamy N, Haw S (2023) College course recommender system based on sentiment analysis. Int J Adv Sci Eng 13:1984
33.
go back to reference Kowsari K, Brown DE, Heidarysafa M, Meimandi KJ, Gerber MS, Barnes LE (2017) Hdltex: Hierarchical deep learning for text classification. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA) 364–371. IEEE Kowsari K, Brown DE, Heidarysafa M, Meimandi KJ, Gerber MS, Barnes LE (2017) Hdltex: Hierarchical deep learning for text classification. In: 2017 16th IEEE international conference on machine learning and applications (ICMLA) 364–371. IEEE
40.
go back to reference E-khool learning, Assessed on February 2023 E-khool learning, Assessed on February 2023
Metadata
Title
Sentiment-Based Hierarchical Deep Learning Framework Using Hybrid Optimization for Course Recommendation in E-learning
Authors
A. Madhavi
A. Nagesh
A. Govardhan
Publication date
05-12-2024
Publisher
Springer Berlin Heidelberg
Published in
Annals of Data Science
Print ISSN: 2198-5804
Electronic ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00580-x

Premium Partner