Skip to main content
Top

2020 | OriginalPaper | Chapter

Sentiment Classification Using Recurrent Neural Network

Authors : Kavita Moholkar, Krupa Rathod, Krishna Rathod, Mritunjay Tomar, Shashwat Rai

Published in: Intelligent Communication Technologies and Virtual Mobile Networks

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sentiment basically represents a person’s attitude, expressing thoughts or an expression triggered by a feeling. Sentiment analysis is the study of sentiments on a given piece of text. Users can express their sentiment/thoughts on internet which may have impact on the user reading it [7]. This expressed sentiment are usually available in unstructured format which needs to be converted. Sentiment analysis is referred to as organizing text into a structured format [7]. The challenge for sentiment analysis is insufficient labelled information, this can be overcome by using machine learning algorithms. Therefore, to perform sentiment analysis we have employed Deep Neural Network.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Swapna, G., Soman, K.P., VinayKumar, R.: Automated detection of cardiac arrhythmia using deep learning techniques. Procedia Comput. Sci. 132, 1192–1201 (2018)CrossRef Swapna, G., Soman, K.P., VinayKumar, R.: Automated detection of cardiac arrhythmia using deep learning techniques. Procedia Comput. Sci. 132, 1192–1201 (2018)CrossRef
2.
go back to reference Luo, Y.: Recurrent neural network for classifying relations in clinical notes. J. Biomed. Informat. 72, 85–95 (2017)CrossRef Luo, Y.: Recurrent neural network for classifying relations in clinical notes. J. Biomed. Informat. 72, 85–95 (2017)CrossRef
3.
go back to reference Rao, G., Huang, W., Feng, Z., Cong, Q.: LSTM with sentence representation for document-level sentiment classification. Neurocomputing 208, 49–57 (2018)CrossRef Rao, G., Huang, W., Feng, Z., Cong, Q.: LSTM with sentence representation for document-level sentiment classification. Neurocomputing 208, 49–57 (2018)CrossRef
4.
go back to reference Khosla, E., Ramesh, D., Sharma, P.P., Nyakotey, S.: RNN’s-RT: flood based prediction of Human and animal deaths in Bihar using recurrent neural networks and regression techniques. Procedia Comput. Sci. 132, 486–497 (2018)CrossRef Khosla, E., Ramesh, D., Sharma, P.P., Nyakotey, S.: RNN’s-RT: flood based prediction of Human and animal deaths in Bihar using recurrent neural networks and regression techniques. Procedia Comput. Sci. 132, 486–497 (2018)CrossRef
5.
go back to reference Kumar, J., Goomer, R., Singh, A.K.: Long short-term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters. Procedia Comput. Sci. 12, 676–682 (2018)CrossRef Kumar, J., Goomer, R., Singh, A.K.: Long short-term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters. Procedia Comput. Sci. 12, 676–682 (2018)CrossRef
6.
go back to reference Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behavior detection with recurrent neural networks. In: The 14th International Conference on Mobile Systems and Pervasive Computing Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behavior detection with recurrent neural networks. In: The 14th International Conference on Mobile Systems and Pervasive Computing
7.
go back to reference Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: A review. IJACSA 8(6), 424 (2017) Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: A review. IJACSA 8(6), 424 (2017)
10.
go back to reference Islam, J., Zhang, Y.: Visual sentiment analysis for social images using transfer learning approach. In: 2016 IEEE International Conference on Big Data Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing Communications, pp. 124–130 (2016) Islam, J., Zhang, Y.: Visual sentiment analysis for social images using transfer learning approach. In: 2016 IEEE International Conference on Big Data Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing Communications, pp. 124–130 (2016)
11.
go back to reference Ouyang, X., Zhou, P., Li, C.H., Liu, L.: Sentiment analysis using convolutional neural network. In: 2015 IEEE International Conference on Computer and Information Technology Ubiquitous Computing and Communications Dependable, Autonomic Secure Computing Pervasive Intelligence Computing (CIT/IUCC/DASC/PICOM), pp. 2359–2364 (2015) Ouyang, X., Zhou, P., Li, C.H., Liu, L.: Sentiment analysis using convolutional neural network. In: 2015 IEEE International Conference on Computer and Information Technology Ubiquitous Computing and Communications Dependable, Autonomic Secure Computing Pervasive Intelligence Computing (CIT/IUCC/DASC/PICOM), pp. 2359–2364 (2015)
12.
go back to reference Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z.: Artificial intelligence perspectives in intelligent systems. In: Proceedings of the 5th Computer Science On-line Conference 2016 (CSOC2016), vol 1, Advances in Intelligent Systems and Computing, vol. 464, pp. 249–261 (2016) Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z.: Artificial intelligence perspectives in intelligent systems. In: Proceedings of the 5th Computer Science On-line Conference 2016 (CSOC2016), vol 1, Advances in Intelligent Systems and Computing, vol. 464, pp. 249–261 (2016)
13.
go back to reference Vateekul, P., Koomsubha, T.: A study of sentiment analysis using deep learning techniques on Thai Twitter Data (2016) Vateekul, P., Koomsubha, T.: A study of sentiment analysis using deep learning techniques on Thai Twitter Data (2016)
14.
go back to reference Yanagimoto, H., Shimada, M., Yoshimura, A.: Document similarity estimation for sentiment analysis using neural network. In: 2013 IEEE/ACIS 12th International Conference on Computer and Information Science, pp. 105–110 (2013) Yanagimoto, H., Shimada, M., Yoshimura, A.: Document similarity estimation for sentiment analysis using neural network. In: 2013 IEEE/ACIS 12th International Conference on Computer and Information Science, pp. 105–110 (2013)
15.
go back to reference Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: a review. Ain, Q.T., Ali, M., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: a review.
16.
go back to reference Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: 42nd Meeting of the Association for Computational Linguistics (ACL 2004), 271–278 (2004) Pang, B., Lee, L.: A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: 42nd Meeting of the Association for Computational Linguistics (ACL 2004), 271–278 (2004)
18.
go back to reference Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment Treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2013) Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment Treebank. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) (2013)
19.
go back to reference Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexiconbasedmethods for sentiment analysis. Comput. linguis. 37(2), 267–307 (2011)CrossRef Taboada, M., Brooke, J., Tofiloski, M., Voll, K., Stede, M.: Lexiconbasedmethods for sentiment analysis. Comput. linguis. 37(2), 267–307 (2011)CrossRef
20.
go back to reference Wan, X.: A comparative study of cross-lingual sentiment classification. In: Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01 (pp. 24–31). IEEE Computer Society (2012) Wan, X.: A comparative study of cross-lingual sentiment classification. In: Proceedings of the The 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technology-Volume 01 (pp. 24–31). IEEE Computer Society (2012)
21.
go back to reference Bollegala, D., Weir, D., Carroll, J.: Cross-Domain SentimentClassification using a Sentiment Sensitive Thesaurus. IEEE Trans. Knowl. Data Eng. 25(8), 1719–1731 (2013)CrossRef Bollegala, D., Weir, D., Carroll, J.: Cross-Domain SentimentClassification using a Sentiment Sensitive Thesaurus. IEEE Trans. Knowl. Data Eng. 25(8), 1719–1731 (2013)CrossRef
Metadata
Title
Sentiment Classification Using Recurrent Neural Network
Authors
Kavita Moholkar
Krupa Rathod
Krishna Rathod
Mritunjay Tomar
Shashwat Rai
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-28364-3_49