Skip to main content
Top
Published in:

01-12-2023 | Original Article

Sentiment prediction model in social media data using beluga dodger optimization-based ensemble classifier

Authors: Priya Vinod, S. Sheeja

Published in: Social Network Analysis and Mining | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The article introduces a sentiment prediction model that utilizes a Beluga Dodger Optimization-based ensemble classifier to analyze Twitter data. The model combines CNN and Bi-LSTM to achieve high accuracy in sentiment classification. The proposed method involves preprocessing steps such as tokenization, stop word removal, stemming, and lemmatization, followed by feature extraction using TF-IDF. The Beluga Dodger Optimization is designed to enhance convergence and accuracy by mimicking the hunting behaviors of humpback whales and sharks. The article also compares the performance of the proposed method with other state-of-the-art techniques, demonstrating its superiority in sentiment analysis. The results show that the BD-optimized deep ensemble classifier achieves high accuracy, sensitivity, and specificity, making it a valuable tool for social media analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abedinia O, Amjady N, Ghasemo A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5):97–116MathSciNetCrossRef Abedinia O, Amjady N, Ghasemo A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21(5):97–116MathSciNetCrossRef
go back to reference Alattar F, Shaalan K (2021) Using artificial intelligence to understand what causes sentiment changes on social media. IEEE Access 9:61756–61767CrossRef Alattar F, Shaalan K (2021) Using artificial intelligence to understand what causes sentiment changes on social media. IEEE Access 9:61756–61767CrossRef
go back to reference Alotaibi B, Abbasi RA, Aslam MA, Saeedi K, Alahmadi D (2020) Startup initiative response analysis (SIRA) framework for analyzing startup initiatives on twitter. IEEE Access 8:10718–10730CrossRef Alotaibi B, Abbasi RA, Aslam MA, Saeedi K, Alahmadi D (2020) Startup initiative response analysis (SIRA) framework for analyzing startup initiatives on twitter. IEEE Access 8:10718–10730CrossRef
go back to reference Alsayat A (2022) Improving sentiment analysis for social media applications using an ensemble deep learning language model. Arab J Sci Eng 47(2):2499–2511CrossRef Alsayat A (2022) Improving sentiment analysis for social media applications using an ensemble deep learning language model. Arab J Sci Eng 47(2):2499–2511CrossRef
go back to reference Al-Twairesh N, Al-Negheimish H (2019) Surface and deep features ensemble for sentiment analysis of arabic tweets. IEEE Access 7:84122–84131CrossRef Al-Twairesh N, Al-Negheimish H (2019) Surface and deep features ensemble for sentiment analysis of arabic tweets. IEEE Access 7:84122–84131CrossRef
go back to reference Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77(19):236–246CrossRef Araque O, Corcuera-Platas I, Sánchez-Rada JF, Iglesias CA (2017) Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst Appl 77(19):236–246CrossRef
go back to reference Asghar MZ, Khan A, Ahmad S, Qasim M, Khan IA (2017) Lexiconenhanced sentiment analysis framework using rule-based classification scheme. PLoS ONE 12(2). Art. no. e0171649 Asghar MZ, Khan A, Ahmad S, Qasim M, Khan IA (2017) Lexiconenhanced sentiment analysis framework using rule-based classification scheme. PLoS ONE 12(2). Art. no. e0171649
go back to reference Babu NV, Kanaga EGM (2022) Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput Sci 3:1–20CrossRef Babu NV, Kanaga EGM (2022) Sentiment analysis in social media data for depression detection using artificial intelligence: a review. SN Comput Sci 3:1–20CrossRef
go back to reference Bianchi F, Nozza D, Hovy D (2022) XLM-EMO: Multilingual emotion prediction in social media text. I:n Proceedings of the 12th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 195–203 Bianchi F, Nozza D, Hovy D (2022) XLM-EMO: Multilingual emotion prediction in social media text. I:n Proceedings of the 12th workshop on computational approaches to subjectivity, sentiment and social media analysis, pp 195–203
go back to reference Bibi M, Aziz W, Almaraashi M, Khan IH, Nadeem MSA, Habib N (2020) A cooperative binary-clustering framework based on majority voting for twitter sentiment analysis. IEEE Access 8:68580–68592CrossRef Bibi M, Aziz W, Almaraashi M, Khan IH, Nadeem MSA, Habib N (2020) A cooperative binary-clustering framework based on majority voting for twitter sentiment analysis. IEEE Access 8:68580–68592CrossRef
go back to reference Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8CrossRef Bollen J, Mao H, Zeng X (2011) Twitter mood predicts the stock market. J Comput Sci 2(1):1–8CrossRef
go back to reference Boukabous M, Azizi M (2022) Crime prediction using a hybrid sentiment analysis approach based on the bidirectional encoder representations from transformers. Indones J Electr Eng Comput Sci 25(2):1131–1139 Boukabous M, Azizi M (2022) Crime prediction using a hybrid sentiment analysis approach based on the bidirectional encoder representations from transformers. Indones J Electr Eng Comput Sci 25(2):1131–1139
go back to reference Cambria E (2016) Affective computing and sentiment analysis. IEEE Intell Syst 31(2):102–107CrossRef Cambria E (2016) Affective computing and sentiment analysis. IEEE Intell Syst 31(2):102–107CrossRef
go back to reference Chandrasekaran G, Antoanela N, Andrei G, Monica C, Hemanth J (2022) Visual sentiment analysis using deep learning models with social media data. Appl Sci 12(3):1030 Chandrasekaran G, Antoanela N, Andrei G, Monica C, Hemanth J (2022) Visual sentiment analysis using deep learning models with social media data. Appl Sci 12(3):1030
go back to reference Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetCrossRef Chen H, Xu Y, Wang M, Zhao X (2019) A balanced whale optimization algorithm for constrained engineering design problems. Appl Math Model 71:45–59MathSciNetCrossRef
go back to reference D’Avanzo E, Pilato G (2015) Mining social network users opinions’ to aid buyers’ shopping decisions. Comput Hum Behav 51:1284–1294CrossRef D’Avanzo E, Pilato G (2015) Mining social network users opinions’ to aid buyers’ shopping decisions. Comput Hum Behav 51:1284–1294CrossRef
go back to reference Dangi D, Dixit DK, Bhagat A (2022) Sentiment analysis of COVID-19 social media data through machine learning. Multimedia Tools Appl 81(29):42261–42283CrossRef Dangi D, Dixit DK, Bhagat A (2022) Sentiment analysis of COVID-19 social media data through machine learning. Multimedia Tools Appl 81(29):42261–42283CrossRef
go back to reference Das S, Kalita HK (2017) Sentiment analysis for Web-based big data: a survey. Int J Adv Res Comput Sci 8(5):1996–1999 Das S, Kalita HK (2017) Sentiment analysis for Web-based big data: a survey. Int J Adv Res Comput Sci 8(5):1996–1999
go back to reference Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12) Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford 1(12)
go back to reference Hajarian M, Bastanfard A, Mohammadzadeh J, Khalilian M (2019) SNEFL: social network explicit fuzzy like dataset and its application for Incel detection. Multimedia Tools Appl 78:33457–33486CrossRef Hajarian M, Bastanfard A, Mohammadzadeh J, Khalilian M (2019) SNEFL: social network explicit fuzzy like dataset and its application for Incel detection. Multimedia Tools Appl 78:33457–33486CrossRef
go back to reference Hu T, She B, Duan L, Yue H, Clunis J (2020) A Systematic spatial and temporal sentiment analysis on geo-tweets. IEEE Access 8:8658–8667CrossRef Hu T, She B, Duan L, Yue H, Clunis J (2020) A Systematic spatial and temporal sentiment analysis on geo-tweets. IEEE Access 8:8658–8667CrossRef
go back to reference Ji X, Chun SA, Wei Z, Geller J (2015) Twitter sentiment classification for measuring public health concerns. Social Netw Anal Mining 5(1):13CrossRef Ji X, Chun SA, Wei Z, Geller J (2015) Twitter sentiment classification for measuring public health concerns. Social Netw Anal Mining 5(1):13CrossRef
go back to reference Jungherr A (2016) Twitter use in election campaigns: a systematic literature review. J Inf Technol Politics 13(1):72–91CrossRef Jungherr A (2016) Twitter use in election campaigns: a systematic literature review. J Inf Technol Politics 13(1):72–91CrossRef
go back to reference Kokab ST, Asghar S, Naz S (2022) Transformer-based deep learning models for the sentiment analysis of social media data. Array 14:100157CrossRef Kokab ST, Asghar S, Naz S (2022) Transformer-based deep learning models for the sentiment analysis of social media data. Array 14:100157CrossRef
go back to reference Lu Q, Zhu Z, Zhang D, Wu W, Guo Q (2020) Interactive rule attention network for aspect-level sentiment analysis. IEEE Access 8:52505–52516CrossRef Lu Q, Zhu Z, Zhang D, Wu W, Guo Q (2020) Interactive rule attention network for aspect-level sentiment analysis. IEEE Access 8:52505–52516CrossRef
go back to reference Mameli M, Paolanti M, Morbidoni C, Frontoni E, Teti A (2022) Social media analytics system for action inspection on social networks. Soc Netw Anal Min 12(1):33CrossRef Mameli M, Paolanti M, Morbidoni C, Frontoni E, Teti A (2022) Social media analytics system for action inspection on social networks. Soc Netw Anal Min 12(1):33CrossRef
go back to reference Martinez-Camara E, Martin-Valdivia MT, Urena-Lopez LA, Montejo-Raez AR (2014) Sentiment analysis in Twitter. Natural Lang Eng 20(1):1–28CrossRef Martinez-Camara E, Martin-Valdivia MT, Urena-Lopez LA, Montejo-Raez AR (2014) Sentiment analysis in Twitter. Natural Lang Eng 20(1):1–28CrossRef
go back to reference Menkhoff T, Chay YW, Bengtsson ML, Woodard CJ, Gan B (2015) Incorporating microblogging (‘tweeting’) in higher education: lessons learnt in a knowledge management course. Comput Hum Behav 51:1295–1302CrossRef Menkhoff T, Chay YW, Bengtsson ML, Woodard CJ, Gan B (2015) Incorporating microblogging (‘tweeting’) in higher education: lessons learnt in a knowledge management course. Comput Hum Behav 51:1295–1302CrossRef
go back to reference Naseem U, Razzak I, Khushi M, Eklund PW, Kim J (2021) COVIDSenti: a large-scale benchmark twitter data set for COVID-19 sentiment analysis. IEEE Trans Comput Soc Syst 8(4):1003–1015CrossRef Naseem U, Razzak I, Khushi M, Eklund PW, Kim J (2021) COVIDSenti: a large-scale benchmark twitter data set for COVID-19 sentiment analysis. IEEE Trans Comput Soc Syst 8(4):1003–1015CrossRef
go back to reference Omuya EO, Okeyo G, Kimwele M (2023) Sentiment analysis on social media tweets using dimensionality reduction and natural language processing. Eng Rep 5(3):e12579CrossRef Omuya EO, Okeyo G, Kimwele M (2023) Sentiment analysis on social media tweets using dimensionality reduction and natural language processing. Eng Rep 5(3):e12579CrossRef
go back to reference Phan HT, Tran VC, Nguyen NT, Hwang D (2020) Improving the performance of sentiment analysis of tweets containing fuzzy sentiment using the feature ensemble model. IEEE Access 8:14630–14641CrossRef Phan HT, Tran VC, Nguyen NT, Hwang D (2020) Improving the performance of sentiment analysis of tweets containing fuzzy sentiment using the feature ensemble model. IEEE Access 8:14630–14641CrossRef
go back to reference Pressman SD, Gallagher MW, Lopez SJ (2013) ‘Is the emotionhealth connection a ‘First-world problem?’ Psychol Sci 24(4):544–549CrossRef Pressman SD, Gallagher MW, Lopez SJ (2013) ‘Is the emotionhealth connection a ‘First-world problem?’ Psychol Sci 24(4):544–549CrossRef
go back to reference Ruz GA, Henríquez PA, Mascareño A (2020) Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Futur Gener Comput Syst 106:92–104CrossRef Ruz GA, Henríquez PA, Mascareño A (2020) Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers. Futur Gener Comput Syst 106:92–104CrossRef
go back to reference Savargiv M, Bastanfard A (2013) Text material design for fuzzy emotional speech corpus based on persian semantic and structure. In: 2013 International conference on fuzzy theory and its applications (iFUZZY) (pp. 380–384). IEEE Savargiv M, Bastanfard A (2013) Text material design for fuzzy emotional speech corpus based on persian semantic and structure. In: 2013 International conference on fuzzy theory and its applications (iFUZZY) (pp. 380–384). IEEE
go back to reference Shelke N, Chaudhury S, Chakrabarti S, Bangare SL, Yogapriya G, Pandey P (2022) An efficient way of text-based emotion analysis from social media using LRA-DNN. Neurosci Inf, p. 100048 Shelke N, Chaudhury S, Chakrabarti S, Bangare SL, Yogapriya G, Pandey P (2022) An efficient way of text-based emotion analysis from social media using LRA-DNN. Neurosci Inf, p. 100048
go back to reference Tighe P, Goldsmith R, Gravenstein M, Bernard H, Fillingim R (2015) The painful tweet: text, sentiment, and community structure analyses of tweets pertaining to pain. J Med Internet Res 17(4):1–19CrossRef Tighe P, Goldsmith R, Gravenstein M, Bernard H, Fillingim R (2015) The painful tweet: text, sentiment, and community structure analyses of tweets pertaining to pain. J Med Internet Res 17(4):1–19CrossRef
go back to reference Waheeb SA, Khan NA, Shang X (2022) Topic modeling and sentiment analysis of online education in the COVID-19 era using social networks based datasets. Electronics 11(5):715 Waheeb SA, Khan NA, Shang X (2022) Topic modeling and sentiment analysis of online education in the COVID-19 era using social networks based datasets. Electronics 11(5):715
go back to reference Wang Y (2018) Sensing human sentiment via social media images: Methodologies and applications. Ph.D. dissertation, Dept. Comput. Sci. Eng., Arizona State Univ., Phoenix, AZ, USA Wang Y (2018) Sensing human sentiment via social media images: Methodologies and applications. Ph.D. dissertation, Dept. Comput. Sci. Eng., Arizona State Univ., Phoenix, AZ, USA
go back to reference Wang L, Niu J, Yu S (2020) SentiDiff: combining textual information and sentiment diffusion patterns for twitter sentiment analysis. IEEE Trans Knowl Data Eng 32(10):2026–2039CrossRef Wang L, Niu J, Yu S (2020) SentiDiff: combining textual information and sentiment diffusion patterns for twitter sentiment analysis. IEEE Trans Knowl Data Eng 32(10):2026–2039CrossRef
go back to reference Xia Y, Cambria E, Hussain A, Zhao H (2015) Word polarity disambiguation using Bayesian model and opinion-level features. Cognit Comput 7(3):369–380CrossRef Xia Y, Cambria E, Hussain A, Zhao H (2015) Word polarity disambiguation using Bayesian model and opinion-level features. Cognit Comput 7(3):369–380CrossRef
go back to reference Yu Y, Wang X (2015) World cup 2014 in the Twitter world: a big data analysis of sentiments in U.S. Sports fans’ tweets. Comput Hum Behav 48:392–400CrossRef Yu Y, Wang X (2015) World cup 2014 in the Twitter world: a big data analysis of sentiments in U.S. Sports fans’ tweets. Comput Hum Behav 48:392–400CrossRef
go back to reference Zhou J, Jin S, Huang X (2020) ADeCNN: an improved model for aspect-level sentiment analysis based on deformable CNN and attention. IEEE Access 8:132970–132979CrossRef Zhou J, Jin S, Huang X (2020) ADeCNN: an improved model for aspect-level sentiment analysis based on deformable CNN and attention. IEEE Access 8:132970–132979CrossRef
Metadata
Title
Sentiment prediction model in social media data using beluga dodger optimization-based ensemble classifier
Authors
Priya Vinod
S. Sheeja
Publication date
01-12-2023
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2023
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-023-01111-x

Premium Partner