Skip to main content
Top
Published in: Quantum Information Processing 6/2016

01-06-2016

Separability conditions based on local fine-grained uncertainty relations

Author: Alexey E. Rastegin

Published in: Quantum Information Processing | Issue 6/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Many protocols of quantum information processing use entangled states. Hence, separability criteria are of great importance. We propose new separability conditions for a bipartite finite-dimensional system. They are derived by using fine-grained uncertainty relations. Fine-grained uncertainty relations can be obtained by consideration of the spectral norms of certain positive matrices. One of possible approaches to separability conditions is connected with upper bounds on the sum of maximal probabilities. Separability conditions are often formulated for measurements that have a special structure. For instance, mutually unbiased bases and mutually unbiased measurements can be utilized for such purposes. Using resolution of the identity for each subsystem of a bipartite system, we construct some resolution of the identity in the product of Hilbert spaces. Separability conditions are then formulated in terms of maximal probabilities for a collection of specific outcomes. The presented conditions are compared with some previous formulations. Our results are exemplified with entangled states of a two-qutrit system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
2.
3.
go back to reference Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935); the translation is reprinted. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton (1983) Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812, 823–828, 844–849 (1935); the translation is reprinted. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton (1983)
4.
go back to reference Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefMATH Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)ADSCrossRefMATH
5.
go back to reference Bohm, D.: Quantum Theory. Prentice-Hall, New Jersey (1951) Bohm, D.: Quantum Theory. Prentice-Hall, New Jersey (1951)
6.
go back to reference Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999)CrossRef Zeilinger, A.: Experiment and the foundations of quantum physics. Rev. Mod. Phys. 71, S288–S297 (1999)CrossRef
7.
go back to reference Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSMathSciNetCrossRefMATH Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSMathSciNetCrossRefMATH
10.
go back to reference Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)ADSMathSciNetCrossRef Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)ADSMathSciNetCrossRef
11.
go back to reference Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193–202 (2003)MathSciNetMATH Chen, K., Wu, L.-A.: A matrix realignment method for recognizing entanglement. Quantum Inf. Comput. 3, 193–202 (2003)MathSciNetMATH
15.
go back to reference de Vicente, J.I., Sánchez-Ruiz, J.: Separability conditions from the Landau–Pollak uncertainty relation. Phys. Rev. A 71, 052325 (2005)ADSCrossRef de Vicente, J.I., Sánchez-Ruiz, J.: Separability conditions from the Landau–Pollak uncertainty relation. Phys. Rev. A 71, 052325 (2005)ADSCrossRef
16.
go back to reference Gühne, O., Mechler, M., Tóth, G., Adam, P.: Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A 74, 010301(R) (2006)CrossRef Gühne, O., Mechler, M., Tóth, G., Adam, P.: Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion. Phys. Rev. A 74, 010301(R) (2006)CrossRef
17.
go back to reference Huang, Y.: Entanglement criteria via concave-function uncertainty relations. Phys. Rev. A 82, 012335 (2010)ADSCrossRef Huang, Y.: Entanglement criteria via concave-function uncertainty relations. Phys. Rev. A 82, 012335 (2010)ADSCrossRef
19.
go back to reference Maccone, L., Bruß, D., Macchiavello, C.: Complementarity and correlations. Phys. Rev. Lett. 114, 130401 (2015)ADSCrossRef Maccone, L., Bruß, D., Macchiavello, C.: Complementarity and correlations. Phys. Rev. Lett. 114, 130401 (2015)ADSCrossRef
20.
go back to reference Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43, 172–198 (1927); the translation is reprinted In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 62–84. Princeton University Press, Princeton (1983) Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43, 172–198 (1927); the translation is reprinted In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 62–84. Princeton University Press, Princeton (1983)
21.
go back to reference Busch, P., Heinonen, T., Lahti, P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)ADSCrossRef Busch, P., Heinonen, T., Lahti, P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)ADSCrossRef
22.
24.
go back to reference Białynicki-Birula, I., Rudnicki, Ł.: Entropic uncertainty relations in quantum physics. In: Sen, K.D. (ed.) Statistical Complexity, pp. 1–34. Springer, Berlin (2011)CrossRef Białynicki-Birula, I., Rudnicki, Ł.: Entropic uncertainty relations in quantum physics. In: Sen, K.D. (ed.) Statistical Complexity, pp. 1–34. Springer, Berlin (2011)CrossRef
27.
go back to reference Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40, 65–84 (1961)MathSciNetCrossRefMATH Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 40, 65–84 (1961)MathSciNetCrossRefMATH
28.
go back to reference Zozor, S., Bosyk, G.M., Portesi, M.: General entropic-like uncertainty relations for \(N\)-level systems. J. Phys. A Math. Theor. 47, 495302 (2014)MathSciNetCrossRefMATH Zozor, S., Bosyk, G.M., Portesi, M.: General entropic-like uncertainty relations for \(N\)-level systems. J. Phys. A Math. Theor. 47, 495302 (2014)MathSciNetCrossRefMATH
29.
30.
go back to reference Ren, L.-H., Fan, H.: General fine-grained uncertainty relation and the second law of thermodynamics. Phys. Rev. A 90, 052110 (2014)ADSCrossRef Ren, L.-H., Fan, H.: General fine-grained uncertainty relation and the second law of thermodynamics. Phys. Rev. A 90, 052110 (2014)ADSCrossRef
32.
go back to reference Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)ADSCrossRef Spengler, C., Huber, M., Brierley, S., Adaktylos, T., Hiesmayr, B.C.: Entanglement detection via mutually unbiased bases. Phys. Rev. A 86, 022311 (2012)ADSCrossRef
33.
go back to reference Rastegin, A.E.: Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 67, 269 (2013)ADSCrossRef Rastegin, A.E.: Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies. Eur. Phys. J. D 67, 269 (2013)ADSCrossRef
34.
go back to reference Chen, B., Ma, T., Fei, S.-M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)ADSCrossRef Chen, B., Ma, T., Fei, S.-M.: Entanglement detection using mutually unbiased measurements. Phys. Rev. A 89, 064302 (2014)ADSCrossRef
35.
go back to reference Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Sys. Inf. Dyn. 22, 1550005 (2015)MathSciNetCrossRefMATH Rastegin, A.E.: On uncertainty relations and entanglement detection with mutually unbiased measurements. Open Sys. Inf. Dyn. 22, 1550005 (2015)MathSciNetCrossRefMATH
36.
go back to reference Chen, B., Li, T., Fei, S.-M.: General SIC-measurement based entanglement detection. Quantum Inf. Process. 14, 2281–2290 (2015)ADSCrossRefMATH Chen, B., Li, T., Fei, S.-M.: General SIC-measurement based entanglement detection. Quantum Inf. Process. 14, 2281–2290 (2015)ADSCrossRefMATH
38.
go back to reference Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)ADSCrossRef Kalev, A., Gour, G.: Mutually unbiased measurements in finite dimensions. New J. Phys. 16, 053038 (2014)ADSCrossRef
39.
go back to reference Kalev, A., Gour, G.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)MathSciNetCrossRefMATH Kalev, A., Gour, G.: Construction of all general symmetric informationally complete measurements. J. Phys. A Math. Theor. 47, 335302 (2014)MathSciNetCrossRefMATH
41.
42.
go back to reference Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)MATH Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1993)MATH
44.
go back to reference Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)CrossRefMATH Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)CrossRefMATH
45.
46.
go back to reference Klappenecker, A., Röttler, M.: Constructions of mutually unbiased bases. In: Finite Fields and Applications, Lecture Notes in Computer Science, vol. 2948, pp. 137–144. Springer, Berlin (2004) Klappenecker, A., Röttler, M.: Constructions of mutually unbiased bases. In: Finite Fields and Applications, Lecture Notes in Computer Science, vol. 2948, pp. 137–144. Springer, Berlin (2004)
47.
go back to reference Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)MathSciNetCrossRefMATH Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2002)MathSciNetCrossRefMATH
48.
go back to reference Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comput. 5, 93–101 (2005)MathSciNetMATH Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions. Quantum Inf. Comput. 5, 93–101 (2005)MathSciNetMATH
49.
go back to reference Rastegin, A.E.: On the Brukner–Zeilinger approach to information in quantum measurements. Proc. Roy. Soc. A 471, 20150435 (2015)ADSCrossRef Rastegin, A.E.: On the Brukner–Zeilinger approach to information in quantum measurements. Proc. Roy. Soc. A 471, 20150435 (2015)ADSCrossRef
51.
go back to reference Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefMATH Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)CrossRefMATH
52.
go back to reference Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)ADSMathSciNetCrossRef Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883–892 (1998)ADSMathSciNetCrossRef
53.
go back to reference Pramanik, T., Kaplan, M., Majumdar, A.S.: Fine-grained Einstein–Podolsky–Rosen-steering inequalities. Phys. Rev. A 90, 050305(R) (2014)ADSCrossRef Pramanik, T., Kaplan, M., Majumdar, A.S.: Fine-grained Einstein–Podolsky–Rosen-steering inequalities. Phys. Rev. A 90, 050305(R) (2014)ADSCrossRef
54.
go back to reference Rastegin, A.E.: Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis entropies. Quantum Inf. Process. 12, 2947–2963 (2013)ADSMathSciNetCrossRefMATH Rastegin, A.E.: Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis entropies. Quantum Inf. Process. 12, 2947–2963 (2013)ADSMathSciNetCrossRefMATH
55.
go back to reference Rastegin, A.E.: Uncertainty and certainty relations for Pauli observables in terms of Renyi entropies of order \(\alpha \in (0;1]\). Commun. Theor. Phys. 61, 293–298 (2014)MathSciNetCrossRefMATH Rastegin, A.E.: Uncertainty and certainty relations for Pauli observables in terms of Renyi entropies of order \(\alpha \in (0;1]\). Commun. Theor. Phys. 61, 293–298 (2014)MathSciNetCrossRefMATH
56.
go back to reference Ivanovic, I.D.: An inequality for the sum of entropies of unbiased quantum measurements. J. Phys. A Math. Gen. 25, L363–L364 (1995)CrossRef Ivanovic, I.D.: An inequality for the sum of entropies of unbiased quantum measurements. J. Phys. A Math. Gen. 25, L363–L364 (1995)CrossRef
57.
go back to reference Sánchez, J.: Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 173, 233–239 (1993)ADSCrossRef Sánchez, J.: Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 173, 233–239 (1993)ADSCrossRef
59.
go back to reference Tóth, G., Gühne, O.: Detection of multipartite entanglement with two-body correlations. Appl. Phys. B 82, 237–241 (2006)ADSCrossRef Tóth, G., Gühne, O.: Detection of multipartite entanglement with two-body correlations. Appl. Phys. B 82, 237–241 (2006)ADSCrossRef
60.
go back to reference Huang, Y., Qiu, D.W.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf. Process. 11, 235–254 (2012)MathSciNetCrossRefMATH Huang, Y., Qiu, D.W.: Concurrence vectors of multipartite states based on coefficient matrices. Quantum Inf. Process. 11, 235–254 (2012)MathSciNetCrossRefMATH
61.
go back to reference Spengler, C., Huber, M., Gabriel, A., Hiesmayr, B.C.: Examining the dimensionality of genuine multipartite entanglement. Quantum Inf. Process 12, 269–278 (2013)ADSMathSciNetCrossRefMATH Spengler, C., Huber, M., Gabriel, A., Hiesmayr, B.C.: Examining the dimensionality of genuine multipartite entanglement. Quantum Inf. Process 12, 269–278 (2013)ADSMathSciNetCrossRefMATH
62.
go back to reference Zhao, C., Yang, G., Hung, W.N.N., Li, X.: A multipartite entanglement measure based on coefficient matrices. Quantum Inf. Process. 14, 2861–2881 (2015)ADSMathSciNetCrossRefMATH Zhao, C., Yang, G., Hung, W.N.N., Li, X.: A multipartite entanglement measure based on coefficient matrices. Quantum Inf. Process. 14, 2861–2881 (2015)ADSMathSciNetCrossRefMATH
63.
go back to reference Kaszlikowski, D., Kwek, L.C., Chen, J.-L., Żukowski, M., Oh, C.H.: Clauser–Horne inequality for three-state systems. Phys. Rev. A 65, 032118 (2002)ADSCrossRef Kaszlikowski, D., Kwek, L.C., Chen, J.-L., Żukowski, M., Oh, C.H.: Clauser–Horne inequality for three-state systems. Phys. Rev. A 65, 032118 (2002)ADSCrossRef
64.
go back to reference Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRef Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)ADSCrossRef
65.
go back to reference Pittenger, A.O., Rubin, M.N.: Note on separability of the Werner states in arbitrary dimensions. Opt. Commun. 179, 447–449 (2000)ADSCrossRef Pittenger, A.O., Rubin, M.N.: Note on separability of the Werner states in arbitrary dimensions. Opt. Commun. 179, 447–449 (2000)ADSCrossRef
66.
go back to reference Brierley, S., Weigert, S., Bengtsson, I.: All mutually unbiased bases in dimensions two to five. Quantum Inf. Comput. 10, 0803–0820 (2010)MathSciNetMATH Brierley, S., Weigert, S., Bengtsson, I.: All mutually unbiased bases in dimensions two to five. Quantum Inf. Comput. 10, 0803–0820 (2010)MathSciNetMATH
67.
go back to reference Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)ADSCrossRef Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)ADSCrossRef
68.
go back to reference Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)ADSCrossRef Mafu, M., Dudley, A., Goyal, S., Giovannini, D., McLaren, M., Padgett, M.J., Konrad, T., Petruccione, F., Lütkenhaus, N., Forbes, A.: Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A 88, 032305 (2013)ADSCrossRef
Metadata
Title
Separability conditions based on local fine-grained uncertainty relations
Author
Alexey E. Rastegin
Publication date
01-06-2016
Publisher
Springer US
Published in
Quantum Information Processing / Issue 6/2016
Print ISSN: 1570-0755
Electronic ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1286-z

Other articles of this Issue 6/2016

Quantum Information Processing 6/2016 Go to the issue