Skip to main content
Top

2016 | OriginalPaper | Chapter

3. Separating Rare-Earth Elements with Ionic Liquids

Authors : Nada Mehio, Huimin Luo, Chi-Linh Do-Thanh, Xiaoqi Sun, Yinglin Shen, Jason R. Bell, Sheng Dai

Published in: Application of Ionic Liquids on Rare Earth Green Separation and Utilization

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The rare-earth elements (REEs) are a group of 17 chemically similar metallic elements; this group consists of scandium, yttrium, and 15 lanthanides. Due to their essential role in permanent magnets, lamp phosphors, catalysts, and rechargeable batteries, the REEs have become an essential component of the global transition to a green economy. Currently, with China producing over 90 % of the global REE output and its increasingly tightening export quota, the rest of the world is confronted with the potential risk of REE shortage. As such, many countries will have to rely on recycling REEs from pre-consumer scrap, industrial residues, and REE-containing end-of-life products. Over the course of the last two decades, ionic liquids have been increasingly used to separate REEs in the recycling process. Ionic liquids (ILs) are a class of molten salts that are liquid at temperatures below 100 °C. ILs are amenable to the recycling of REEs because the cation and anion components are readily tailored to a given process, and they offer numerous advantages over typical organic solvents, such as low volatility, low flammability, a broad temperature range of stability, the ability to dissolve both inorganic and organic compounds, high conductivity, and wide electrochemical windows. In this chapter, we discuss the performance of several IL-based extraction systems used to separate and recycle REEs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Binnemeans K, Jones PT, Blanpain B, Van Gerven T, Yang YX, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRef Binnemeans K, Jones PT, Blanpain B, Van Gerven T, Yang YX, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22CrossRef
2.
go back to reference European Commission (2010) Critical raw materials for the EU, Report of the Ad-hoc working group on defining critical raw materials European Commission (2010) Critical raw materials for the EU, Report of the Ad-hoc working group on defining critical raw materials
3.
go back to reference U.S. Department of Energy (2011) 2011 critical materials strategy U.S. Department of Energy (2011) 2011 critical materials strategy
4.
go back to reference Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414CrossRef Alonso E, Sherman AM, Wallington TJ, Everson MP, Field FR, Roth R, Kirchain RE (2012) Evaluating rare earth element availability: a case with revolutionary demand from clean technologies. Environ Sci Technol 46:3406–3414CrossRef
5.
go back to reference Jones PT, Van Gerven T, Van Ackert K, Geysen D, Binnemans K, Fransaer J, Blanpain B, Mishra B, Apelian D (2011) Characterization and modeling of heterogeneous deformation in commercial purity titanium. JOM 63:66–73CrossRef Jones PT, Van Gerven T, Van Ackert K, Geysen D, Binnemans K, Fransaer J, Blanpain B, Mishra B, Apelian D (2011) Characterization and modeling of heterogeneous deformation in commercial purity titanium. JOM 63:66–73CrossRef
6.
go back to reference Wellens S, Goovaerts R, Möller C, Luyten J, Thijs B, Binnemans K (2013) A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chem 15:3160–3164CrossRef Wellens S, Goovaerts R, Möller C, Luyten J, Thijs B, Binnemans K (2013) A continuous ionic liquid extraction process for the separation of cobalt from nickel. Green Chem 15:3160–3164CrossRef
7.
go back to reference Rout A, Karmark S, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2011) Room temperature ionic liquid diluent for the mutual separation of europium(III) from americium(III). Sep Purif Technol 81:109–115CrossRef Rout A, Karmark S, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2011) Room temperature ionic liquid diluent for the mutual separation of europium(III) from americium(III). Sep Purif Technol 81:109–115CrossRef
8.
go back to reference Bell TJ, Ikeda Y (2011) The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans 40:10125–10130CrossRef Bell TJ, Ikeda Y (2011) The application of novel hydrophobic ionic liquids to the extraction of uranium(VI) from nitric acid medium and a determination of the uranyl complexes formed. Dalton Trans 40:10125–10130CrossRef
9.
go back to reference Papaiconomou N, Génand-Pinaz S, Leveque JM, Guittonneau S (2013) Selective extraction of gold and platinum in water using ionic liquids. A simple two-step extraction process. Dalton Trans 42:1979–1982CrossRef Papaiconomou N, Génand-Pinaz S, Leveque JM, Guittonneau S (2013) Selective extraction of gold and platinum in water using ionic liquids. A simple two-step extraction process. Dalton Trans 42:1979–1982CrossRef
10.
go back to reference Han XX, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086CrossRef Han XX, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086CrossRef
11.
go back to reference Reyna-González JM, Torriero AAJ, Siriwardana AI, Burgar IM, Bond AM (2011) Extraction of silver(I) from aqueous solutions in the absence and presence of copper(II) with a methimazole-based ionic liquid. Analyst 136:3314–3322CrossRef Reyna-González JM, Torriero AAJ, Siriwardana AI, Burgar IM, Bond AM (2011) Extraction of silver(I) from aqueous solutions in the absence and presence of copper(II) with a methimazole-based ionic liquid. Analyst 136:3314–3322CrossRef
12.
go back to reference Heitzman H, Young B, Rausch D, Rickert P, Stepinski D, Dietz M (2006) Fluorous ionic liquids as solvents for the liquid–liquid extraction of metal ions by macrocyclic polyethers. Talanta 69:527–531CrossRef Heitzman H, Young B, Rausch D, Rickert P, Stepinski D, Dietz M (2006) Fluorous ionic liquids as solvents for the liquid–liquid extraction of metal ions by macrocyclic polyethers. Talanta 69:527–531CrossRef
13.
go back to reference Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRef Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111:3508–3576CrossRef
14.
go back to reference Sun XO, Luo HM, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128CrossRef Sun XO, Luo HM, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128CrossRef
15.
go back to reference Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JJH, Rogers RD (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 135–136 Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JJH, Rogers RD (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun 135–136
16.
go back to reference Chiappe C, Pomelli CS (2014) Point-functionalization of ionic liquids: an overview of synthesis and applications. Eur J Org Chem 6120–6139 Chiappe C, Pomelli CS (2014) Point-functionalization of ionic liquids: an overview of synthesis and applications. Eur J Org Chem 6120–6139
17.
go back to reference Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Highly efficient diglycolamide-based task-specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem Eur J 19:3230–3238CrossRef Mohapatra PK, Sengupta A, Iqbal M, Huskens J, Verboom W (2013) Highly efficient diglycolamide-based task-specific ionic liquids: synthesis, unusual extraction behaviour, irradiation, and fluorescence studies. Chem Eur J 19:3230–3238CrossRef
18.
go back to reference Rout A, Binnemans K (2014) Solvent extraction of neodymium(III) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent. Ind Eng Chem Res 53:6500–6508CrossRef Rout A, Binnemans K (2014) Solvent extraction of neodymium(III) by functionalized ionic liquid trioctylmethylammonium dioctyl diglycolamate in fluorine-free ionic liquid diluent. Ind Eng Chem Res 53:6500–6508CrossRef
19.
go back to reference Angell CA, Ansari Y, Zhao ZF (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27CrossRef Angell CA, Ansari Y, Zhao ZF (2012) Ionic liquids: past, present and future. Faraday Discuss 154:9–27CrossRef
20.
go back to reference Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419CrossRef Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419CrossRef
21.
go back to reference Bell JR, Luo HM, Dai S (2011) Superbase-derived protic ionic liquids with chelating fluorinated anions. Tetrahedron Lett 52:3723–3725CrossRef Bell JR, Luo HM, Dai S (2011) Superbase-derived protic ionic liquids with chelating fluorinated anions. Tetrahedron Lett 52:3723–3725CrossRef
22.
go back to reference Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2007) Decolorization of ionic liquids for spectroscopy. Anal Chem 79:758–764CrossRef Earle MJ, Gordon CM, Plechkova NV, Seddon KR, Welton T (2007) Decolorization of ionic liquids for spectroscopy. Anal Chem 79:758–764CrossRef
23.
go back to reference Burrell AK, Del Sesto RE, Baker SN, McCleaskey TM, Baker GA (2007) The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem 9:449–454CrossRef Burrell AK, Del Sesto RE, Baker SN, McCleaskey TM, Baker GA (2007) The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem 9:449–454CrossRef
24.
go back to reference Nockermann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415:131–136CrossRef Nockermann P, Binnemans K, Driesen K (2005) Purification of imidazolium ionic liquids for spectroscopic applications. Chem Phys Lett 415:131–136CrossRef
25.
go back to reference Baiker A, Anderson JM, Jutz F (2010) Purification of ionic liquids by supercritical CO2 monitored by infrared spectroscopy. J Supercrit Fluids 55:395–400CrossRef Baiker A, Anderson JM, Jutz F (2010) Purification of ionic liquids by supercritical CO2 monitored by infrared spectroscopy. J Supercrit Fluids 55:395–400CrossRef
26.
go back to reference Ren SH, Hou YC, Wu WZ, Liu WN (2010) Purification of ionic liquids: sweeping solvents by nitrogen. J Chem Eng Data 55:5074–5077CrossRef Ren SH, Hou YC, Wu WZ, Liu WN (2010) Purification of ionic liquids: sweeping solvents by nitrogen. J Chem Eng Data 55:5074–5077CrossRef
27.
go back to reference Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J 55:1274–1290CrossRef Gardas RL, Coutinho JAP (2009) Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J 55:1274–1290CrossRef
28.
go back to reference Wang CM, Luo HM, Li HR, Dai S (2010) Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Phys Chem Chem Phys 12:7246–7250CrossRef Wang CM, Luo HM, Li HR, Dai S (2010) Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Phys Chem Chem Phys 12:7246–7250CrossRef
29.
go back to reference Stark A, Behrend R, Braun O, Muller A, Ranke J, Ondruschka B, Jastorff B (2008) Purity specification methods for ionic liquids. Green Chem 10:1152–1161CrossRef Stark A, Behrend R, Braun O, Muller A, Ranke J, Ondruschka B, Jastorff B (2008) Purity specification methods for ionic liquids. Green Chem 10:1152–1161CrossRef
30.
go back to reference Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306CrossRef Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A (2006) Experimental vapor pressures of 1-alkyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Phys Chem A 110:7303–7306CrossRef
31.
go back to reference Luo HM, Barker GA, Lee SJ, Pagni RM, Dai S (2009) Ultrastable superbase-derived protic ionic liquids. J Phys Chem B 113:4181–4183CrossRef Luo HM, Barker GA, Lee SJ, Pagni RM, Dai S (2009) Ultrastable superbase-derived protic ionic liquids. J Phys Chem B 113:4181–4183CrossRef
32.
go back to reference Emel’yanenko VN, Vervkin SP, Heintz A (2007) The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and Ab initio calculations. J Am Chem Soc 129:3930–3937CrossRef Emel’yanenko VN, Vervkin SP, Heintz A (2007) The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and Ab initio calculations. J Am Chem Soc 129:3930–3937CrossRef
33.
go back to reference Armstrong JP, Hurst C, Jones RG, Licence P, Lovelock KRJ, Satterley CJ, Villar-Garcia IJ (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990CrossRef Armstrong JP, Hurst C, Jones RG, Licence P, Lovelock KRJ, Satterley CJ, Villar-Garcia IJ (2007) Vapourisation of ionic liquids. Phys Chem Chem Phys 9:982–990CrossRef
34.
go back to reference Kreher UP, Rosamilia AE, Raston CL, Scott JL, Strauss CR (2004) Self-associated, “distillable” ionic media. Molecules 9:387–393CrossRef Kreher UP, Rosamilia AE, Raston CL, Scott JL, Strauss CR (2004) Self-associated, “distillable” ionic media. Molecules 9:387–393CrossRef
35.
go back to reference Wassercheid P (2006) Chemistry: volatile times for ionic liquids. Nature 439:797CrossRef Wassercheid P (2006) Chemistry: volatile times for ionic liquids. Nature 439:797CrossRef
36.
go back to reference Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 8:2133–2140CrossRef Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans 8:2133–2140CrossRef
37.
go back to reference Baranyai KJ, Deacon GB, MacFarlane DR, Pringle JM, Scott JL (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 57:145–147CrossRef Baranyai KJ, Deacon GB, MacFarlane DR, Pringle JM, Scott JL (2004) Thermal degradation of ionic liquids at elevated temperatures. Aust J Chem 57:145–147CrossRef
38.
go back to reference Pernak J, Smiglak M, Griffin ST, Hough WL, Wilson TB, Pernak A, Zabielska-Matejuk J, Fojutowski A, Kita K, Rogers RD (2006) Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem 8:798–806CrossRef Pernak J, Smiglak M, Griffin ST, Hough WL, Wilson TB, Pernak A, Zabielska-Matejuk J, Fojutowski A, Kita K, Rogers RD (2006) Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem 8:798–806CrossRef
39.
go back to reference Kulkarni PS, Branco LC, Crespo JG, Nunes MC, Raymundo A, Alfonso CAM (2007) Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem Eur J 13:8478–8488CrossRef Kulkarni PS, Branco LC, Crespo JG, Nunes MC, Raymundo A, Alfonso CAM (2007) Comparison of physicochemical properties of new ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations. Chem Eur J 13:8478–8488CrossRef
40.
go back to reference Zhou ZB, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11:752–766CrossRef Zhou ZB, Matsumoto H, Tatsumi K (2005) Low-melting, low-viscous, hydrophobic ionic liquids: aliphatic quaternary ammonium salts with perfluoroalkyltrifluoroborates. Chem Eur J 11:752–766CrossRef
41.
go back to reference Papaiconomou N, Estager J, Traore Y, Bauduin P, Bas C, Legeai S, Viboud S, Draye M (2010) Synthesis, physicochemical properties, and toxicity data of new hydrophobic ionic liquids containing dimethylpyridinium and trimethylpyridinium cations. J Chem Eng Data 55:1971–1979CrossRef Papaiconomou N, Estager J, Traore Y, Bauduin P, Bas C, Legeai S, Viboud S, Draye M (2010) Synthesis, physicochemical properties, and toxicity data of new hydrophobic ionic liquids containing dimethylpyridinium and trimethylpyridinium cations. J Chem Eng Data 55:1971–1979CrossRef
42.
go back to reference Tokuda H, Ishii K, Susan M, Tsuzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839CrossRef Tokuda H, Ishii K, Susan M, Tsuzuki S, Hayamizu K, Watanabe M (2006) Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B 110:2833–2839CrossRef
43.
go back to reference Fox DM, Awad WH, Gilman JW, Maupin PH, DeLong HC, Trulove PC (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5:724–727CrossRef Fox DM, Awad WH, Gilman JW, Maupin PH, DeLong HC, Trulove PC (2003) Flammability, thermal stability, and phase change characteristics of several trialkylimidazolium salts. Green Chem 5:724–727CrossRef
44.
go back to reference Andersn JL, Ding RF, Ellern A, Armstrong DW (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127:593–604CrossRef Andersn JL, Ding RF, Ellern A, Armstrong DW (2005) Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc 127:593–604CrossRef
45.
go back to reference Meine N, Benedito F, Rinaldi R (2010) Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem 12:1711–1714CrossRef Meine N, Benedito F, Rinaldi R (2010) Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem 12:1711–1714CrossRef
46.
go back to reference Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun LY, Thrasher JS, Kirichenko K, Singh S, Katritzky AR, Rogers RD (2006) Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun 24:2554–2556CrossRef Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun LY, Thrasher JS, Kirichenko K, Singh S, Katritzky AR, Rogers RD (2006) Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun 24:2554–2556CrossRef
47.
go back to reference Jones CB, Haiges R, Schroer T, Christie KO (2006) Oxygen-balanced energetic ionic liquid. Angew Chem Int Ed 45:4981–4984CrossRef Jones CB, Haiges R, Schroer T, Christie KO (2006) Oxygen-balanced energetic ionic liquid. Angew Chem Int Ed 45:4981–4984CrossRef
48.
go back to reference Tao GH, Guo Y, Joo YJ, Twamley B, Shreeve JM (2008) Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J Mater Chem 18:5524–5530CrossRef Tao GH, Guo Y, Joo YJ, Twamley B, Shreeve JM (2008) Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. J Mater Chem 18:5524–5530CrossRef
49.
go back to reference Kagimoto J, Taguchi S, Fukomoto K, Ohno H (2010) Hydrophobic and low-density amino acid ionic liquids. J Mol Liq 153:133–138CrossRef Kagimoto J, Taguchi S, Fukomoto K, Ohno H (2010) Hydrophobic and low-density amino acid ionic liquids. J Mol Liq 153:133–138CrossRef
50.
go back to reference Bonhote P, Dias P, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178CrossRef Bonhote P, Dias P, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178CrossRef
51.
go back to reference Fitchett BD, Knepp TN, Conboy JC (2004) 1-Alkyl-3-methylimidazolium Bis(perfluoroalkylsulfonyl)imide water-immiscible ionic liquids: the effect of water on electrochemical and physical properties. J Electrochem Soc 151:E219–E225CrossRef Fitchett BD, Knepp TN, Conboy JC (2004) 1-Alkyl-3-methylimidazolium Bis(perfluoroalkylsulfonyl)imide water-immiscible ionic liquids: the effect of water on electrochemical and physical properties. J Electrochem Soc 151:E219–E225CrossRef
52.
go back to reference O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J Chem Eng Data 53:2865–2874CrossRef O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) In vitro and in vivo photocytotoxicity of boron dipyrromethene derivatives for photodynamic therapy. J Chem Eng Data 53:2865–2874CrossRef
53.
go back to reference Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem 3:161–166CrossRef Dzyuba SV, Bartsch RA (2002) Influence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and Bis(trifluoromethylsulfonyl)imides on physical properties of the ionic liquids. ChemPhysChem 3:161–166CrossRef
54.
go back to reference Kuhlmann E, Himmler S, Giebelhaus H, Wassercheid P (2007) Imidazolium dialkylphosphates—a class of versatile, halogen-free and hydrolytically stable ionic liquids. Green Chem 9:233–242CrossRef Kuhlmann E, Himmler S, Giebelhaus H, Wassercheid P (2007) Imidazolium dialkylphosphates—a class of versatile, halogen-free and hydrolytically stable ionic liquids. Green Chem 9:233–242CrossRef
55.
go back to reference Siqueira LJ, Ribeiro MC (2009) Alkoxy chain effect on the viscosity of a quaternary ammonium ionic liquid: molecular dynamics simulations. J Phys Chem B 113:1074–1079CrossRef Siqueira LJ, Ribeiro MC (2009) Alkoxy chain effect on the viscosity of a quaternary ammonium ionic liquid: molecular dynamics simulations. J Phys Chem B 113:1074–1079CrossRef
56.
go back to reference Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181CrossRef Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181CrossRef
57.
go back to reference Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287CrossRef Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287CrossRef
58.
go back to reference Widegreen JA, Saurer EM, Marsh KN, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 12:1610–1612CrossRef Widegreen JA, Saurer EM, Marsh KN, Magee JW (2005) The effect of dissolved water on the viscosities of hydrophobic room-temperature ionic liquids. Chem Commun 12:1610–1612CrossRef
59.
go back to reference Widegreen JA, Saurer EM, Marsh KN, Magee JW (2005) Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J Chem Thermodyn 37:569–575CrossRef Widegreen JA, Saurer EM, Marsh KN, Magee JW (2005) Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity. J Chem Thermodyn 37:569–575CrossRef
60.
go back to reference Zafarani-Mottar MT, Majdan-Cegincara R (2007) Viscosity, density, speed of sound, and refractive index of binary mixtures of organic solvent + ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate at 298.15 K. J Chem Eng Data 52:2359CrossRef Zafarani-Mottar MT, Majdan-Cegincara R (2007) Viscosity, density, speed of sound, and refractive index of binary mixtures of organic solvent + ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate at 298.15 K. J Chem Eng Data 52:2359CrossRef
61.
go back to reference Carda-Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375:191–199 Carda-Broch S, Berthod A, Armstrong DW (2003) Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid. Anal Bioanal Chem 375:191–199
62.
go back to reference Rodriguez H, Bernnecke JF (2006) Solubility of β-carotene in near-critical mixtures of (ethane + propane). J Chem Eng Data 51:2445CrossRef Rodriguez H, Bernnecke JF (2006) Solubility of β-carotene in near-critical mixtures of (ethane + propane). J Chem Eng Data 51:2445CrossRef
63.
go back to reference Kellkar MS, Maginn EJ (2007) Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations. J Phys Chem B 111:4867–4876CrossRef Kellkar MS, Maginn EJ (2007) Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium Bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations. J Phys Chem B 111:4867–4876CrossRef
64.
go back to reference Kundu A, Kishore N (2002) Volumetric properties of nucleic acid bases and nucleosides in aqueous ethanol, 1,2-ethanediol, 2-propanol, and 2-methyl-2-propanol at 25°C. J Solut Chem 31:477–498CrossRef Kundu A, Kishore N (2002) Volumetric properties of nucleic acid bases and nucleosides in aqueous ethanol, 1,2-ethanediol, 2-propanol, and 2-methyl-2-propanol at 25°C. J Solut Chem 31:477–498CrossRef
65.
go back to reference Fox ET, Paillard E, Borodin O, Henderson WA (2013) Physicochemical properties of binary ionic liquid–aprotic solvent electrolyte mixtures. J Phys Chem C 117:78–84CrossRef Fox ET, Paillard E, Borodin O, Henderson WA (2013) Physicochemical properties of binary ionic liquid–aprotic solvent electrolyte mixtures. J Phys Chem C 117:78–84CrossRef
66.
go back to reference Borodin O, Henderson WA, Fox ET, Berman M, Gobet M, Greenbaum S (2013) Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction. J Phys Chem B 117:10581–10588CrossRef Borodin O, Henderson WA, Fox ET, Berman M, Gobet M, Greenbaum S (2013) Anchoring effect of exfoliated-montmorillonite-supported Pd catalyst for the oxygen reduction reaction. J Phys Chem B 117:10581–10588CrossRef
67.
go back to reference Poling BE, Prausnitz JM, O’Connell JP (2001) Properties of gases and liquids, 5th edn. McGraw-Hill, New York Poling BE, Prausnitz JM, O’Connell JP (2001) Properties of gases and liquids, 5th edn. McGraw-Hill, New York
68.
go back to reference Anantaraman AV (1986) Thermodynamics of solvent mixtures. I. Density and viscosity of binary mixtures of N-methylpyrrolidinone – tetrahydrofuran and propylene carbonate – acetonitrile. Can J Chem 64:46–50CrossRef Anantaraman AV (1986) Thermodynamics of solvent mixtures. I. Density and viscosity of binary mixtures of N-methylpyrrolidinone – tetrahydrofuran and propylene carbonate – acetonitrile. Can J Chem 64:46–50CrossRef
69.
go back to reference Martins RJ, Cardoso MJED, Barcia OE (2000) Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind Eng Chem Res 39:849–854CrossRef Martins RJ, Cardoso MJED, Barcia OE (2000) Excess Gibbs free energy model for calculating the viscosity of binary liquid mixtures. Ind Eng Chem Res 39:849–854CrossRef
70.
go back to reference Toh SLL, McFarlane J, Tsourism C, DePaoli DW, Luo HM, Dai S (2006) Room-temperature ionic liquids in liquid-liquid extraction: effects of solubility in aqueous solutions on surface properties. Solvent Extr Ion Exch 24:33–56CrossRef Toh SLL, McFarlane J, Tsourism C, DePaoli DW, Luo HM, Dai S (2006) Room-temperature ionic liquids in liquid-liquid extraction: effects of solubility in aqueous solutions on surface properties. Solvent Extr Ion Exch 24:33–56CrossRef
71.
go back to reference Kalhn M, Stuber C, Sedurman A, Wu P (2010) What determines the miscibility of ionic liquids with water? Identification of the underlying factors to enable a straightforward prediction. J Phys Chem B 114:2856–2858CrossRef Kalhn M, Stuber C, Sedurman A, Wu P (2010) What determines the miscibility of ionic liquids with water? Identification of the underlying factors to enable a straightforward prediction. J Phys Chem B 114:2856–2858CrossRef
72.
go back to reference Makowsaka A, Siporska A, Szydlowski J (2009) Isotope effects on miscibility of 1-alkyl-3-methylimidazolium Bis(trifluoromethyl)sulfonyl imides with aromatic hydrocarbons. Fluid Phase Equilib 282:108–112CrossRef Makowsaka A, Siporska A, Szydlowski J (2009) Isotope effects on miscibility of 1-alkyl-3-methylimidazolium Bis(trifluoromethyl)sulfonyl imides with aromatic hydrocarbons. Fluid Phase Equilib 282:108–112CrossRef
73.
go back to reference Sun XQ, Ji Y, Guo L, Chen J, Li DQ (2011) A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides. Sep Purif Technol 81:25–30 Sun XQ, Ji Y, Guo L, Chen J, Li DQ (2011) A novel ammonium ionic liquid based extraction strategy for separating scandium from yttrium and lanthanides. Sep Purif Technol 81:25–30
74.
go back to reference Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2002) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164CrossRef Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2002) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164CrossRef
75.
go back to reference Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741CrossRef Chun S, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73:3737–3741CrossRef
76.
go back to reference Freire MG, Carvalho PJ, Silva AM, Santos L, Rebelo LPN, Marrucho IM, Coutinho JAP (2009) Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 113:202CrossRef Freire MG, Carvalho PJ, Silva AM, Santos L, Rebelo LPN, Marrucho IM, Coutinho JAP (2009) Ion specific effects on the mutual solubilities of water and hydrophobic ionic liquids. J Phys Chem B 113:202CrossRef
77.
go back to reference Gutowski KE, Broker GA, Willauer HD, Huddleston G, Swatloski RP, Holbrey J, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633CrossRef Gutowski KE, Broker GA, Willauer HD, Huddleston G, Swatloski RP, Holbrey J, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125:6632–6633CrossRef
78.
go back to reference Tome LIN, Varanda FR, Freire MG, Marrucho LM, Coutinho JA (2009) Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: the anion effect. J Phys Chem B 113:2815–2825CrossRef Tome LIN, Varanda FR, Freire MG, Marrucho LM, Coutinho JA (2009) Towards an understanding of the mutual solubilities of water and hydrophobic ionic liquids in the presence of salts: the anion effect. J Phys Chem B 113:2815–2825CrossRef
79.
go back to reference Domanska U, Marciniak A (2007) Phase behaviour of 1-hexyloxymethyl-3-methyl-imidazolium and 1,3-dihexyloxymethyl-imidazolium based ionic liquids with alcohols, water, ketones and hydrocarbons: the effect of cation and anion on solubility. Fluid Phase Equilib 260:9–18CrossRef Domanska U, Marciniak A (2007) Phase behaviour of 1-hexyloxymethyl-3-methyl-imidazolium and 1,3-dihexyloxymethyl-imidazolium based ionic liquids with alcohols, water, ketones and hydrocarbons: the effect of cation and anion on solubility. Fluid Phase Equilib 260:9–18CrossRef
80.
go back to reference Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecule 15:2405–2426CrossRef Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecule 15:2405–2426CrossRef
81.
go back to reference Makowska A, Siporska A, Oracz P, Sydlowski J (2010) Miscibility of trihexyl(tetradecyl)phosphonium chloride with alkanes. J Chem Eng Data 55:2829–2832CrossRef Makowska A, Siporska A, Oracz P, Sydlowski J (2010) Miscibility of trihexyl(tetradecyl)phosphonium chloride with alkanes. J Chem Eng Data 55:2829–2832CrossRef
82.
go back to reference Docherty KM, Dixon JK, Kulpa CF (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegredation 18:481–493CrossRef Docherty KM, Dixon JK, Kulpa CF (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegredation 18:481–493CrossRef
83.
go back to reference Jastorff B, Stormann R, Rnake J, Molter K, Stock F, Oberheitmann B, Hoffmann W, Nuchter M, Ondruschka B, Fisler J (2003) How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluation. Green Chem 5:136–142CrossRef Jastorff B, Stormann R, Rnake J, Molter K, Stock F, Oberheitmann B, Hoffmann W, Nuchter M, Ondruschka B, Fisler J (2003) How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluation. Green Chem 5:136–142CrossRef
84.
go back to reference Pham TPT, Cho CW, Jeon CO, Chung YJ, Lee MW, Yun YS (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43:516–521CrossRef Pham TPT, Cho CW, Jeon CO, Chung YJ, Lee MW, Yun YS (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43:516–521CrossRef
85.
go back to reference Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt AK, Bottin-Webber U, Matzke M, Ranke J, Jastroff B, Thoming J (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem 10:214–224CrossRef Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt AK, Bottin-Webber U, Matzke M, Ranke J, Jastroff B, Thoming J (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem 10:214–224CrossRef
86.
go back to reference Zhang C, Wang H, Malhotra SV, Dodge CJ, Francis AJ (2010) Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem 12:851–858CrossRef Zhang C, Wang H, Malhotra SV, Dodge CJ, Francis AJ (2010) Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem 12:851–858CrossRef
87.
go back to reference Siedlecka EM, Stepnowski P (2009) The effect of alkyl chain length on the degradation of alkylimidazolium- and pyridinium-type ionic liquids in a Fenton-like system. Environ Sci Pollut Res 16:453–458CrossRef Siedlecka EM, Stepnowski P (2009) The effect of alkyl chain length on the degradation of alkylimidazolium- and pyridinium-type ionic liquids in a Fenton-like system. Environ Sci Pollut Res 16:453–458CrossRef
88.
go back to reference Siedlecka EM, Mrozik W, Kaczynski Z, Stepnowski P (2008) Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a Fenton-like system. J Hazard Mater 154:893–900CrossRef Siedlecka EM, Mrozik W, Kaczynski Z, Stepnowski P (2008) Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a Fenton-like system. J Hazard Mater 154:893–900CrossRef
89.
go back to reference Katoh R, Takahashi K (2009) Photo-degradation of imidazolium ionic liquids. Radiat Phys Chem 78:1126–1128CrossRef Katoh R, Takahashi K (2009) Photo-degradation of imidazolium ionic liquids. Radiat Phys Chem 78:1126–1128CrossRef
90.
go back to reference Stepnowski P, Zaleska A (2005) Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J Photochem Photobiol A Chem 170:45–50CrossRef Stepnowski P, Zaleska A (2005) Comparison of different advanced oxidation processes for the degradation of room temperature ionic liquids. J Photochem Photobiol A Chem 170:45–50CrossRef
91.
go back to reference Bell JR, Luo HM, Dai S (2014) Superbase-derived protic ionic liquid extractants for metal ion separation. Sep Purif Technol 130:147–150CrossRef Bell JR, Luo HM, Dai S (2014) Superbase-derived protic ionic liquid extractants for metal ion separation. Sep Purif Technol 130:147–150CrossRef
92.
go back to reference Bell JR, Luo HM, Dai S (2012) Solvent extraction separation of La3+ and Ba2+ using imidazolium ionic liquids and TODGA extractant. Sep Sci Technol 47:2002–2006 Bell JR, Luo HM, Dai S (2012) Solvent extraction separation of La3+ and Ba2+ using imidazolium ionic liquids and TODGA extractant. Sep Sci Technol 47:2002–2006
93.
go back to reference Dietz ML, Dzielwa LA (2001) Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid–liquid extraction. Chem Commun 20:2124–2125CrossRef Dietz ML, Dzielwa LA (2001) Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid–liquid extraction. Chem Commun 20:2124–2125CrossRef
94.
go back to reference Dai S, Ju YH, Barnes CE (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J Chem Soc Dalton Trans 8:1201–1202CrossRef Dai S, Ju YH, Barnes CE (1999) Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids. J Chem Soc Dalton Trans 8:1201–1202CrossRef
95.
go back to reference Mehdi H, Binnermans K, Van Hecke K, Van Meervelt L, Nockemann P (2010) Hydrophobic ionic liquids with strongly coordinating anions. Chem Commun 46:234–236CrossRef Mehdi H, Binnermans K, Van Hecke K, Van Meervelt L, Nockemann P (2010) Hydrophobic ionic liquids with strongly coordinating anions. Chem Commun 46:234–236CrossRef
96.
go back to reference Gupta OD, Twamley B, Shreeve JM (2004) Low melting and slightly viscous ionic liquids via protonation of trialkylamines by perfluoroalkyl β-diketones. Tetrahedron Lett 45:1733–1736CrossRef Gupta OD, Twamley B, Shreeve JM (2004) Low melting and slightly viscous ionic liquids via protonation of trialkylamines by perfluoroalkyl β-diketones. Tetrahedron Lett 45:1733–1736CrossRef
97.
go back to reference Gupta OD, Twamley B, Shreeve JM (2005) Acyclic tertiary diamines and 1,4,7,10-tetraazacyclododecane with fluorine-containing β-diketones: leading to low melting ionic adducts. J Fluor Chem 126:1222–1229CrossRef Gupta OD, Twamley B, Shreeve JM (2005) Acyclic tertiary diamines and 1,4,7,10-tetraazacyclododecane with fluorine-containing β-diketones: leading to low melting ionic adducts. J Fluor Chem 126:1222–1229CrossRef
98.
go back to reference Li X, Zeng Z, Garg S, Twamley B, Shreeve JM (2008) Fluorine-containing ionic liquids from N-alkylpyrrolidine and N-methylpiperidine and fluorinated acetylacetones: low melting points and low viscosities. Eur J Inorg Chem 3353–3358 Li X, Zeng Z, Garg S, Twamley B, Shreeve JM (2008) Fluorine-containing ionic liquids from N-alkylpyrrolidine and N-methylpiperidine and fluorinated acetylacetones: low melting points and low viscosities. Eur J Inorg Chem 3353–3358
99.
go back to reference Jensen MP, Neufeind J, Beitz JV, Skanthakumar S, Soderholm L (2003) Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J Am Chem Soc 125:15466–15473CrossRef Jensen MP, Neufeind J, Beitz JV, Skanthakumar S, Soderholm L (2003) Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J Am Chem Soc 125:15466–15473CrossRef
100.
go back to reference Sasaki Y, Sugo Y, Szuki S, Tachimorio S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3–N-dodecane system. Solvent Extr Ion Exch 19:91–103 Sasaki Y, Sugo Y, Szuki S, Tachimorio S (2001) The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3N-dodecane system. Solvent Extr Ion Exch 19:91–103
101.
go back to reference Ansari SA, Pathak PN, Macnchanda VK, Husain M, Prasad AK (2005) N, N, N’, N’-tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high‐level waste (HLW). Solvent Extr Ion Exch 23:463–479CrossRef Ansari SA, Pathak PN, Macnchanda VK, Husain M, Prasad AK (2005) N, N, N’, N’-tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high‐level waste (HLW). Solvent Extr Ion Exch 23:463–479CrossRef
102.
go back to reference Ansari SA, Pathak PN, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772CrossRef Ansari SA, Pathak PN, Mohapatra PK, Manchanda VK (2012) Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem Rev 112:1751–1772CrossRef
103.
go back to reference Weaver BS, Kappelma FA (1968) Preferential extraction of lanthanides over trivalent actinides by monoacidic organophosphates from carboxylic acids and from mixtures of carboxylic and aminopolyacetic acids. J Inorg Nucl Chem 30:263–272CrossRef Weaver BS, Kappelma FA (1968) Preferential extraction of lanthanides over trivalent actinides by monoacidic organophosphates from carboxylic acids and from mixtures of carboxylic and aminopolyacetic acids. J Inorg Nucl Chem 30:263–272CrossRef
104.
go back to reference Nilsson M, Nash KL (2007) Review article: a review of the development and operational characteristics of the TALSPEAK process. Solvent Extr Ion Exch 25:665–701CrossRef Nilsson M, Nash KL (2007) Review article: a review of the development and operational characteristics of the TALSPEAK process. Solvent Extr Ion Exch 25:665–701CrossRef
105.
go back to reference Leggett CJ, Liu GK, Jensen MP (2011) Do aqueous ternary complexes influence the TALSPEAK process? Solvent Extr Ion Exch 28:313–334CrossRef Leggett CJ, Liu GK, Jensen MP (2011) Do aqueous ternary complexes influence the TALSPEAK process? Solvent Extr Ion Exch 28:313–334CrossRef
106.
go back to reference Sun XQ, Luo HM, Dai S (2012) Solvent extraction of rare-earth ions based on functionalized ionic liquids. Talanta 90:132–137CrossRef Sun XQ, Luo HM, Dai S (2012) Solvent extraction of rare-earth ions based on functionalized ionic liquids. Talanta 90:132–137CrossRef
107.
go back to reference Sun XQ, Bell JR, Luo HM, Dai S (2011) Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases. Dalton Trans 40:8019–8023CrossRef Sun XQ, Bell JR, Luo HM, Dai S (2011) Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases. Dalton Trans 40:8019–8023CrossRef
108.
go back to reference Hovarth LT, Rabai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75CrossRef Hovarth LT, Rabai J (1994) Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science 266:72–75CrossRef
109.
go back to reference Minoofar PN, Hernandez R, Chia S, Dunn B, Zink JI, Franville AC (2002) Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. J Am Chem Soc 124:14388–14396CrossRef Minoofar PN, Hernandez R, Chia S, Dunn B, Zink JI, Franville AC (2002) Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. J Am Chem Soc 124:14388–14396CrossRef
110.
go back to reference Zahn S, Uhlig F, Thar J, Spickermann C, Krichner B (2008) Intermolecular forces in an ionic liquid ([Mmim][Cl]) versus those in a typical salt (NaCl). Angew Chem Int Ed 47:3639CrossRef Zahn S, Uhlig F, Thar J, Spickermann C, Krichner B (2008) Intermolecular forces in an ionic liquid ([Mmim][Cl]) versus those in a typical salt (NaCl). Angew Chem Int Ed 47:3639CrossRef
111.
go back to reference Sun XQ, Luo HM, Dai S (2013) Mechanistic investigation of solvent extraction based on anion-functionalized ionic liquids for selective separation of rare-earth ions. Dalton Trans 42:8270–8275CrossRef Sun XQ, Luo HM, Dai S (2013) Mechanistic investigation of solvent extraction based on anion-functionalized ionic liquids for selective separation of rare-earth ions. Dalton Trans 42:8270–8275CrossRef
112.
go back to reference Malachy McCann RC, Ben-Shoshan M, McKee V, Tahi AA, Devereux M, Kavanagh K, Creaven BS, Kellet A (2012) Silver(I) complexes of 9-anthracenecarboxylic acid and imidazoles: synthesis, structure and antimicrobial activity. Dalton Trans 41:6516–6527CrossRef Malachy McCann RC, Ben-Shoshan M, McKee V, Tahi AA, Devereux M, Kavanagh K, Creaven BS, Kellet A (2012) Silver(I) complexes of 9-anthracenecarboxylic acid and imidazoles: synthesis, structure and antimicrobial activity. Dalton Trans 41:6516–6527CrossRef
113.
go back to reference Eilbeck WJ, Holmes F, Underhill AE (1967) Cobalt(II), nickel(II), and copper(II) complexes of imidazole and thiazole. J Chem Soc A 757–761 Eilbeck WJ, Holmes F, Underhill AE (1967) Cobalt(II), nickel(II), and copper(II) complexes of imidazole and thiazole. J Chem Soc A 757–761
114.
go back to reference Lagutschenkov A, Lorenz UJ, Dopfer O (2011) IR spectroscopy of isolated metal-organic complexes of biocatalytic interest: evidence for coordination number four for Zn2+(imidazole)4. Int J Mass Spectrom 308:316–339CrossRef Lagutschenkov A, Lorenz UJ, Dopfer O (2011) IR spectroscopy of isolated metal-organic complexes of biocatalytic interest: evidence for coordination number four for Zn2+(imidazole)4. Int J Mass Spectrom 308:316–339CrossRef
115.
go back to reference Shen YL, Li WK, Wu JR, Li S, Luo HM, Dai S, Wu WS (2014) Solvent extraction of lanthanides and yttrium from aqueous solution with methylimidazole in an ionic liquid. Dalton Trans 43:10023–10032CrossRef Shen YL, Li WK, Wu JR, Li S, Luo HM, Dai S, Wu WS (2014) Solvent extraction of lanthanides and yttrium from aqueous solution with methylimidazole in an ionic liquid. Dalton Trans 43:10023–10032CrossRef
116.
go back to reference Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76:5039–5044CrossRef Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76:5039–5044CrossRef
117.
go back to reference Barnard KR, Nealon GI, Ogden MI, Skelton BW (2010) Crystallographic determination of three Ni-α-hydroxyoxime-carboxylic acid synergist complexes. Solvent Extr Ion Exch 28:778–792CrossRef Barnard KR, Nealon GI, Ogden MI, Skelton BW (2010) Crystallographic determination of three Ni-α-hydroxyoxime-carboxylic acid synergist complexes. Solvent Extr Ion Exch 28:778–792CrossRef
118.
go back to reference Mathur JN, Murali MS, Nash KL (2001) Actinide partitioning – a review. Solvent Extr Ion Exch 19:357–390CrossRef Mathur JN, Murali MS, Nash KL (2001) Actinide partitioning – a review. Solvent Extr Ion Exch 19:357–390CrossRef
119.
go back to reference Turkington JR, Bailey PJ, Love JB, Wilson AM, Tasker PA (2013) Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction. Chem Commun 49:1891–1899CrossRef Turkington JR, Bailey PJ, Love JB, Wilson AM, Tasker PA (2013) Exploiting outer-sphere interactions to enhance metal recovery by solvent extraction. Chem Commun 49:1891–1899CrossRef
Metadata
Title
Separating Rare-Earth Elements with Ionic Liquids
Authors
Nada Mehio
Huimin Luo
Chi-Linh Do-Thanh
Xiaoqi Sun
Yinglin Shen
Jason R. Bell
Sheng Dai
Copyright Year
2016
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-47510-2_3