Skip to main content
Top

2024 | OriginalPaper | Chapter

Sequences of Uncountable Iterated Function Systems: The Convergence of the Sequences of Fractals and Fractal Measures Associated

Authors : Ion Mierlus-Mazilu, Lucian Nită

Published in: Mathematical Methods for Engineering Applications

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we consider a sequence of uncountable iterated function system (U.I.F.S.). Each term of this sequence is built using an uncountable family of contractions and a linear and continuous operator. For each U.I.F.S. of the sequence we have an associated attractor, a Markov-type operator and a fractal measure.
We study the convergence of the corresponding attractors and fractal measures sequences.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chitescu, I., Ioana, L., Miculescu, R., Nita, L.: Sesquiliniar uniform vector integral. Proc. Indian Acad. Sci. (Math. Sci.) 125(2), 229–236 (2015) Chitescu, I., Ioana, L., Miculescu, R., Nita, L.: Sesquiliniar uniform vector integral. Proc. Indian Acad. Sci. (Math. Sci.) 125(2), 229–236 (2015)
2.
go back to reference Chitescu, I., Ioana, L., Miculescu, R., Nita, L.: Monge-Kantorovich norms on spaces of vector measures. Results Math. 70, 349–371 (2016)MathSciNetCrossRef Chitescu, I., Ioana, L., Miculescu, R., Nita, L.: Monge-Kantorovich norms on spaces of vector measures. Results Math. 70, 349–371 (2016)MathSciNetCrossRef
3.
go back to reference Chitescu, I.: Spatii de Functii (in Romanian). Editura Stiintifica si Enciclopedica, Bucharest (1983) Chitescu, I.: Spatii de Functii (in Romanian). Editura Stiintifica si Enciclopedica, Bucharest (1983)
4.
go back to reference Nita, L.: The attractor and the Hutchinson measure for an uncountable iterated function system. In: Proceedings of Mathematics and Educational Symposium of Department of Mathematics and Computer Science, Bucharest, 2nd edn., pp. 109–111 (2016) Nita, L.: The attractor and the Hutchinson measure for an uncountable iterated function system. In: Proceedings of Mathematics and Educational Symposium of Department of Mathematics and Computer Science, Bucharest, 2nd edn., pp. 109–111 (2016)
5.
go back to reference Siretchi, G.: Spatii Concrete in Analiza Functionala (in Romanian). Centrul de Multiplicare al Universitatii Bucuresti, Bucharest (1982) Siretchi, G.: Spatii Concrete in Analiza Functionala (in Romanian). Centrul de Multiplicare al Universitatii Bucuresti, Bucharest (1982)
6.
go back to reference Constantinescu, S., Mierlus-Mazilu, I., Nita, L.: Families of iterated function systems. Convergences properties of the associated attractors and fractal measures. U.P.B. Sci. Bull. Ser. A 84(2), 107–115 (2022) Constantinescu, S., Mierlus-Mazilu, I., Nita, L.: Families of iterated function systems. Convergences properties of the associated attractors and fractal measures. U.P.B. Sci. Bull. Ser. A 84(2), 107–115 (2022)
7.
go back to reference D’Aniello, E., Steele, T.H.: Attractors for classes of iterated function systems. Eur. J. Math. 5(1), 116–137 (2019)MathSciNetCrossRef D’Aniello, E., Steele, T.H.: Attractors for classes of iterated function systems. Eur. J. Math. 5(1), 116–137 (2019)MathSciNetCrossRef
8.
go back to reference Mihail, A.: Recurrent iterated function systems. Rev. Roumaine Math. Pures Appl. 53(1), 43–53 (2008)MathSciNet Mihail, A.: Recurrent iterated function systems. Rev. Roumaine Math. Pures Appl. 53(1), 43–53 (2008)MathSciNet
Metadata
Title
Sequences of Uncountable Iterated Function Systems: The Convergence of the Sequences of Fractals and Fractal Measures Associated
Authors
Ion Mierlus-Mazilu
Lucian Nită
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-49218-1_4

Premium Partners