Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

1. Sequential and Concurrent Multiscale Modeling of Multiphysics: From Atoms to Continuum

Authors : James D. Lee, Jiaoyan Li, Zhen Zhang, Leyu Wang

Published in: Micromechanics and Nanomechanics of Composite Solids

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The multiscale and multi-physics approaches reach a new height for modeling and simulation. It opens up a new opportunity to connect engineering applications with basic science. In this work, a more general governing equation of non-equilibrium molecular dynamics, covering thermo-mechanical-electromagnetic coupling effects, has been derived. This theoretical development of classical molecular dynamics provides a solid foundation for our bottom-up sequential multiscale modeling, from which we calculate material properties including the elastic constants, thermal conductivity, specific heat, and thermal expansion coefficients for thermoelasticity. With these preparations, we further present our newly formulated concurrent multiscale theory. The key challenge in constructing a concurrent multiscale theory hinges at the formulation of the interfacial conditions, which determine the communication between the atomic region and genuine continuum region. Our philosophy of concurrent modeling is that we decompose the solution region into two sub-regions in space and utilize the central difference method with different time steps for different sub-regions to march on in time. For sub-regions where critical physical phenomena, such as crack initiation and propagation, occur, we adopt molecular dynamics with small time step to simulate the material behavior with relatively high resolution. For non-critical regions, we adopt finite element method with relatively large time step to reduce the computational effort. The interfacial condition is constructed naturally by anchoring finite element nodes at centroids of groups. Each group is a cluster of atoms simulated by molecular dynamics. In this way, a concurrent multiscale modeling theory from atoms to genuine continuum is constructed. To test the capability of our theory, we conduct crack propagation simulations with different loading conditions. It was observed that the crack that pre-existed in the continuum region can propagate into the critical atomic region without any fracture criterion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alder, B.J., Wainwright, T.E.: Studies in molecular dnamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)MathSciNetCrossRef Alder, B.J., Wainwright, T.E.: Studies in molecular dnamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)MathSciNetCrossRef
go back to reference Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008)CrossRef Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008)CrossRef
go back to reference Boresi, A.P., Chong, K.P., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley, New York, NY (2011)MATH Boresi, A.P., Chong, K.P., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley, New York, NY (2011)MATH
go back to reference Chen, L., Kumar, S.: Thermal transport in graphene supported on copper. J. Appl. Phys. 112(4), 043502 (2012)CrossRef Chen, L., Kumar, S.: Thermal transport in graphene supported on copper. J. Appl. Phys. 112(4), 043502 (2012)CrossRef
go back to reference Chen, Y., Lee, J.D., Eskandarin, A.: Meshless Methods in Solid Mechanics. Springer, New York, NY (2006) Chen, Y., Lee, J.D., Eskandarin, A.: Meshless Methods in Solid Mechanics. Springer, New York, NY (2006)
go back to reference de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland Pub. Co., Amsterdam (1972) de Groot, S.R., Suttorp, L.G.: Foundations of Electrodynamics. North-Holland Pub. Co., Amsterdam (1972)
go back to reference Eringen, A.C.: Mechanics of Continua. R. E. Krieger Pub. Co., Malabar, FL (1980)MATH Eringen, A.C.: Mechanics of Continua. R. E. Krieger Pub. Co., Malabar, FL (1980)MATH
go back to reference Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer, New York, NY (1999)CrossRefMATH Eringen, A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer, New York, NY (1999)CrossRefMATH
go back to reference Frank, I., Tanenbaum, D., Van der Zande, A., McEuen, P.: Mechanical property of suspended graphene sheets. J. Vac. Sci. Technol., B. 25(6), 2558–2561 (2007)CrossRef Frank, I., Tanenbaum, D., Van der Zande, A., McEuen, P.: Mechanical property of suspended graphene sheets. J. Vac. Sci. Technol., B. 25(6), 2558–2561 (2007)CrossRef
go back to reference Fried, L., Howard, W.: Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B. 61(13), 8734 (2000)CrossRef Fried, L., Howard, W.: Explicit Gibbs free energy equation of state applied to the carbon phase diagram. Phys. Rev. B. 61(13), 8734 (2000)CrossRef
go back to reference Guo, Z., Zhang, D., Gong, X.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95(16), 163103 (2009)CrossRef Guo, Z., Zhang, D., Gong, X.: Thermal conductivity of graphene nanoribbons. Appl. Phys. Lett. 95(16), 163103 (2009)CrossRef
go back to reference Guo, Z., Ding, J., Gong, X.: Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons. Phys. Rev. B. 85(23), 235429 (2012)CrossRef Guo, Z., Ding, J., Gong, X.: Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons. Phys. Rev. B. 85(23), 235429 (2012)CrossRef
go back to reference Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31(3), 1695 (1985)CrossRef Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31(3), 1695 (1985)CrossRef
go back to reference Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graphics. 14(1), 33–38 (1996)CrossRef Humphrey, W., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graphics. 14(1), 33–38 (1996)CrossRef
go back to reference Jiang, J., Lan, J., Wang, J., Li, B.: Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism. J. Appl. Phys. 107(5), 054314 (2010a)CrossRef Jiang, J., Lan, J., Wang, J., Li, B.: Isotopic effects on the thermal conductivity of graphene nanoribbons: localization mechanism. J. Appl. Phys. 107(5), 054314 (2010a)CrossRef
go back to reference Jiang, J., Wang, J., Li, B.: Elastic and nonlinear stiffness of graphene: a simple approach. Phys. Rev. B. 81(7), 073405 (2010b)CrossRef Jiang, J., Wang, J., Li, B.: Elastic and nonlinear stiffness of graphene: a simple approach. Phys. Rev. B. 81(7), 073405 (2010b)CrossRef
go back to reference Jing, N., Xue, Q., Ling, C., Shan, M., Zhang, T., Zhou, X., Jiao, Z.: Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation. RSC Adv. 2(24), 9124–9129 (2012)CrossRef Jing, N., Xue, Q., Ling, C., Shan, M., Zhang, T., Zhou, X., Jiao, Z.: Effect of defects on Young’s modulus of graphene sheets: a molecular dynamics simulation. RSC Adv. 2(24), 9124–9129 (2012)CrossRef
go back to reference Lee, C., Wei, X., Kysar, J., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008)CrossRef Lee, C., Wei, X., Kysar, J., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321(5887), 385–388 (2008)CrossRef
go back to reference Li, J., Lee, J.D.: Reformulation of the Nose-Hoover thermostat for heat conduction simulation at nanoscale. Acta Mech. 225, 1223–1233 (2014a)CrossRefMATH Li, J., Lee, J.D.: Reformulation of the Nose-Hoover thermostat for heat conduction simulation at nanoscale. Acta Mech. 225, 1223–1233 (2014a)CrossRefMATH
go back to reference Li, J., Lee, J.D.: Stiffness-based course-grained miecular dynamics. J. Nanomech. Micromech. 4, 1–8 (2014b)MathSciNet Li, J., Lee, J.D.: Stiffness-based course-grained miecular dynamics. J. Nanomech. Micromech. 4, 1–8 (2014b)MathSciNet
go back to reference Li, J., Wang, X., Lee, J.D.: Multiple time scale algorithm for multiscale modeling. Comput. Model. Eng. Sci. 85, 463–480 (2012) Li, J., Wang, X., Lee, J.D.: Multiple time scale algorithm for multiscale modeling. Comput. Model. Eng. Sci. 85, 463–480 (2012)
go back to reference Lindsay, L., Broido, D., Mingo, N.: Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B. 83(23), 235428 (2011)CrossRef Lindsay, L., Broido, D., Mingo, N.: Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B. 83(23), 235428 (2011)CrossRef
go back to reference Neek-Amal, M., Peeters, F.: Nanoindentation of a circular sheet of bilayer graphene. Phys. Rev. B. 81(23), 235421 (2010)CrossRef Neek-Amal, M., Peeters, F.: Nanoindentation of a circular sheet of bilayer graphene. Phys. Rev. B. 81(23), 235421 (2010)CrossRef
go back to reference Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984a)CrossRef Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984a)CrossRef
go back to reference Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 53, 255–268 (1984b)CrossRef Nosé, S.: A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 53, 255–268 (1984b)CrossRef
go back to reference Pei, Q., Zhang, Y., Shenoy, V.: Mechanical properties of graphynes under tension: a molecular dynamics study. Appl. Phys. Lett. 101(8), 081909 (2012)CrossRef Pei, Q., Zhang, Y., Shenoy, V.: Mechanical properties of graphynes under tension: a molecular dynamics study. Appl. Phys. Lett. 101(8), 081909 (2012)CrossRef
go back to reference Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)CrossRef Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)CrossRef
go back to reference Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full period table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRef Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full period table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRef
go back to reference Roldan, R., Castellanos-Gomez, A., Cappelluti, E., Guinea, F.: Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter. 27, 333201 (2015)CrossRef Roldan, R., Castellanos-Gomez, A., Cappelluti, E., Guinea, F.: Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter. 27, 333201 (2015)CrossRef
go back to reference Shaina, P., George, L., Yadav, V., Jaiswal, M.: Estimating the thermal expansion coefficient of graphene: the role of graphene–substrate interactions. J. Phys. Condens. Matter. 28(8), 085301 (2016)CrossRef Shaina, P., George, L., Yadav, V., Jaiswal, M.: Estimating the thermal expansion coefficient of graphene: the role of graphene–substrate interactions. J. Phys. Condens. Matter. 28(8), 085301 (2016)CrossRef
go back to reference Shen, Y., Wu, H.: Interlayer shear effect on multilayer graphene subjected to bending. Appl. Phys. Lett. 100(10), 101909 (2012)CrossRef Shen, Y., Wu, H.: Interlayer shear effect on multilayer graphene subjected to bending. Appl. Phys. Lett. 100(10), 101909 (2012)CrossRef
go back to reference Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 31, 5262 (1985)CrossRef Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B. 31, 5262 (1985)CrossRef
go back to reference Subramaniyan, A.K., Sun, C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45(14–15), 4340–4346 (2008)CrossRefMATH Subramaniyan, A.K., Sun, C.T.: Continuum interpretation of virial stress in molecular simulations. Int. J. Solids Struct. 45(14–15), 4340–4346 (2008)CrossRefMATH
go back to reference Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988)CrossRef Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B. 37, 6991–7000 (1988)CrossRef
go back to reference Tersoff, J.: Modeling solid-state chemstry: interatomic potentials for multicomponent system. Phys. Rev. B. 39, 5566–5566 (1989)CrossRef Tersoff, J.: Modeling solid-state chemstry: interatomic potentials for multicomponent system. Phys. Rev. B. 39, 5566–5566 (1989)CrossRef
go back to reference Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B. 73(6), 064304 (2006)CrossRef Tohei, T., Kuwabara, A., Oba, F., Tanaka, I.: Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations. Phys. Rev. B. 73(6), 064304 (2006)CrossRef
go back to reference Wang, C.C.: A new representation theorem for isotropic functions, Part I and Part II. Arch. Rat. Mech. Anal. 36, 166–223 (1970) Wang, C.C.: A new representation theorem for isotropic functions, Part I and Part II. Arch. Rat. Mech. Anal. 36, 166–223 (1970)
go back to reference Wei, Z., Ni, Z., Bi, K., Chen, M., Chen, Y.: In-plane lattice thermal conductivities of multilayer graphene films. Carbon. 49(8), 2653–2658 (2011b)CrossRef Wei, Z., Ni, Z., Bi, K., Chen, M., Chen, Y.: In-plane lattice thermal conductivities of multilayer graphene films. Carbon. 49(8), 2653–2658 (2011b)CrossRef
go back to reference Wei, N., Xu, L., Wang, H., Zheng, J.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology. 22(10), 105705 (2011a)CrossRef Wei, N., Xu, L., Wang, H., Zheng, J.: Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility. Nanotechnology. 22(10), 105705 (2011a)CrossRef
go back to reference Yang, Z., Lee, J.D., Eskandarian, A.: Objectivity in molecular dynamics simulations. Int. J. Terraspace Sci. Eng. 8(1), 79–92 (2016) Yang, Z., Lee, J.D., Eskandarian, A.: Objectivity in molecular dynamics simulations. Int. J. Terraspace Sci. Eng. 8(1), 79–92 (2016)
go back to reference Yoon, D., Son, Y., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11(8), 3227–3231 (2011)CrossRef Yoon, D., Son, Y., Cheong, H.: Negative thermal expansion coefficient of graphene measured by Raman spectroscopy. Nano Lett. 11(8), 3227–3231 (2011)CrossRef
go back to reference Zhang, Y., Pei, Q., Wang, C.: Mechanical properties of graphynes under tension: a molecular dynamics study. Appl. Phys. Lett. 101(8), 081909 (2012)CrossRef Zhang, Y., Pei, Q., Wang, C.: Mechanical properties of graphynes under tension: a molecular dynamics study. Appl. Phys. Lett. 101(8), 081909 (2012)CrossRef
go back to reference Zhao, H., Min, K., Aluru, N.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012–3015 (2009)CrossRef Zhao, H., Min, K., Aluru, N.: Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett. 9(8), 3012–3015 (2009)CrossRef
go back to reference Zheng, Y., Wei, N., Fan, Z., Xu, L., Huang, Z.: Mechanical properties of grafold: a demonstration of strengthened graphene. Nanotechnology. 22(40), 405701 (2011)CrossRef Zheng, Y., Wei, N., Fan, Z., Xu, L., Huang, Z.: Mechanical properties of grafold: a demonstration of strengthened graphene. Nanotechnology. 22(40), 405701 (2011)CrossRef
Metadata
Title
Sequential and Concurrent Multiscale Modeling of Multiphysics: From Atoms to Continuum
Authors
James D. Lee
Jiaoyan Li
Zhen Zhang
Leyu Wang
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-52794-9_1

Premium Partners