Skip to main content
Top

2024 | OriginalPaper | Chapter

Several Relationships Connected to a Special Function Used in the Simple Equations Method (SEsM)

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of certain classes of simple equations in the Simple Equations Method (SEsM) favors the occurrence of a specific special function in these solutions. We discuss this special function and its specific cases and derive some relationships which connect the special functions possessing different parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Torokhti A., Howlett P.: Computational Methods for Modelling of Nonlinear Systems. Elsevier, Amsterdam (2007) Torokhti A., Howlett P.: Computational Methods for Modelling of Nonlinear Systems. Elsevier, Amsterdam (2007)
3.
go back to reference Jordanov, I. P.: On the nonlinear waves in (2+ 1)-dimensional population systems. Compt. rend. Acad. bulg. Sci 61, 307–314 (2008). Jordanov, I. P.: On the nonlinear waves in (2+ 1)-dimensional population systems. Compt. rend. Acad. bulg. Sci 61, 307–314 (2008).
6.
go back to reference Jordanov, I. P., Dimitrova, Z. I.: On Nonlinear Waves of Migration. Journal of Theoretical and Applied Mechanics 40, 89–96 (2010). Jordanov, I. P., Dimitrova, Z. I.: On Nonlinear Waves of Migration. Journal of Theoretical and Applied Mechanics 40, 89–96 (2010).
8.
go back to reference Nicolis G., Nicolis C.,: Foundations of Complex Systems. World Scientific, New Jersey (2012). Nicolis G., Nicolis C.,: Foundations of Complex Systems. World Scientific, New Jersey (2012).
9.
go back to reference Dimitrova, Z. I.: Fluctuations and dynamics of the chaotic attractor connected to an instability in a heated from below rotating fluid layer. Compt. rend. Acad. bulg. Sci 60, 1065 – 1070 (2007). Dimitrova, Z. I.: Fluctuations and dynamics of the chaotic attractor connected to an instability in a heated from below rotating fluid layer. Compt. rend. Acad. bulg. Sci 60, 1065 – 1070 (2007).
11.
go back to reference Vitanov N.K.: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models. Springer, Cham (2016) Vitanov N.K.: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models. Springer, Cham (2016)
13.
go back to reference Levin. R.: Complexity. Life at the Edge of Chaos. The University of Chicago Press, Chicago (1999). Levin. R.: Complexity. Life at the Edge of Chaos. The University of Chicago Press, Chicago (1999).
15.
go back to reference Dimitrova, Z. I., Hoffmann N. P.: On the probability for extreme water levels of the river Elba in Germany. Compt. rend. Acad. bulg. Sci 65, 153 – 160 (2012). Dimitrova, Z. I., Hoffmann N. P.: On the probability for extreme water levels of the river Elba in Germany. Compt. rend. Acad. bulg. Sci 65, 153 – 160 (2012).
18.
go back to reference Dimitrova, Z.I.: On the nonlinear dynamics of interacting populations. Effects of delay on populations substitution. Compt. rend. Acad. bulg. Sci 61, 1541 – 1548 (2008). Dimitrova, Z.I.: On the nonlinear dynamics of interacting populations. Effects of delay on populations substitution. Compt. rend. Acad. bulg. Sci 61, 1541 – 1548 (2008).
22.
go back to reference Chen, W.-K.: Theory of Nets. Flows in Networks. Imperial College Press, London, UK (2003) Chen, W.-K.: Theory of Nets. Flows in Networks. Imperial College Press, London, UK (2003)
23.
go back to reference Struble R.: Nonlinear Differential Equations. Dover, New York (2018) Struble R.: Nonlinear Differential Equations. Dover, New York (2018)
24.
go back to reference Kantz, H., Schreiber T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (2004) Kantz, H., Schreiber T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, UK (2004)
26.
go back to reference Dimitrova, Z., Gogova, D.,: Investigation of Differences in Optical Phonons Modes by Principal Component Analysis. Compt. rend. Acad. bulg. Sci 63, 1415 – 1420 (2010). Dimitrova, Z., Gogova, D.,: Investigation of Differences in Optical Phonons Modes by Principal Component Analysis. Compt. rend. Acad. bulg. Sci 63, 1415 – 1420 (2010).
27.
go back to reference Vitanov, N. K., Ausloos, M. R.: Knowledge epidemics and population dynamics models for describing idea diffusion. In: Scharnhorst A., Boerner K., van den Besselaar P. (eds.) Models of science dynamics. Understanding Complex Systems. pp. 69-125. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23068-4_3 Vitanov, N. K., Ausloos, M. R.: Knowledge epidemics and population dynamics models for describing idea diffusion. In: Scharnhorst A., Boerner K., van den Besselaar P. (eds.) Models of science dynamics. Understanding Complex Systems. pp. 69-125. Springer, Berlin, Heidelberg (2012). https://​doi.​org/​10.​1007/​978-3-642-23068-4_​3
29.
go back to reference Mills T.: Applied Time Series Analysis. Academic Press, London (2019) Mills T.: Applied Time Series Analysis. Academic Press, London (2019)
31.
go back to reference Dimitrova, Z. I.: On the Low-Dimensional Dynamics of Blood Flow in Small Peripheral Human Arteries. Compt. rend. Acad. bulg. Sci. 63, 55 – 60 (2010). Dimitrova, Z. I.: On the Low-Dimensional Dynamics of Blood Flow in Small Peripheral Human Arteries. Compt. rend. Acad. bulg. Sci. 63, 55 – 60 (2010).
34.
40.
go back to reference Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK, (2004) Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge, UK, (2004)
41.
go back to reference Tabor. M.: Chaos and Integrability in Dynamical Systems. Wiley, New York (1989) Tabor. M.: Chaos and Integrability in Dynamical Systems. Wiley, New York (1989)
47.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Simple Equations Method (SEsM): Algorithm, connection with Hirota method, Inverse Scattering Transform Method, and several other methods. Entropy 23, 10 (2021). https://doi.org/10.3390/e23010010 Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Simple Equations Method (SEsM): Algorithm, connection with Hirota method, Inverse Scattering Transform Method, and several other methods. Entropy 23, 10 (2021). https://​doi.​org/​10.​3390/​e23010010
48.
go back to reference Vitanov, N. K.: Recent developments of the methodology of the modified method of simplest equation with application. Pliska Studia Mathematica Bulgarica 30, 29 – 42 (2019). Vitanov, N. K.: Recent developments of the methodology of the modified method of simplest equation with application. Pliska Studia Mathematica Bulgarica 30, 29 – 42 (2019).
49.
go back to reference Vitanov, N.K.: Modified method of simplest equation for obtaining exact solutions of nonlinear partia differential equations: history, recent developments of the methodology and studied of classes of equations. Journal of Theoretical and Applied Mechanics 49, 107 – 122 (2019). Vitanov, N.K.: Modified method of simplest equation for obtaining exact solutions of nonlinear partia differential equations: history, recent developments of the methodology and studied of classes of equations. Journal of Theoretical and Applied Mechanics 49, 107 – 122 (2019).
50.
52.
go back to reference Dimitrova, Z. I., Vitanov, N. K.: Travelling waves connected to blood flow and motion of arterial walls. Gadomski, A. (ed.) In: Water in Biomechanical and Related Systems pp. 243-263. Springer, Cham. (2021) Dimitrova, Z. I., Vitanov, N. K.: Travelling waves connected to blood flow and motion of arterial walls. Gadomski, A. (ed.) In: Water in Biomechanical and Related Systems pp. 243-263. Springer, Cham. (2021)
62.
63.
go back to reference Vitanov, N. K., Dimitrova, Z. I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845 (2010). https://doi.org/10.1016/j.cnsns.2009.11.029 Vitanov, N. K., Dimitrova, Z. I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Communications in Nonlinear Science and Numerical Simulation 15, 2836 – 2845 (2010). https://​doi.​org/​10.​1016/​j.​cnsns.​2009.​11.​029
66.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis-Processi equation and b-equation. Communications in Nonlinear Science and Numerical Simulation 16, 3033 – 3044 (2011). https://doi.org/10.1016/j.cnsns.2010.11.013 Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis-Processi equation and b-equation. Communications in Nonlinear Science and Numerical Simulation 16, 3033 – 3044 (2011). https://​doi.​org/​10.​1016/​j.​cnsns.​2010.​11.​013
68.
go back to reference Vitanov, N. K.: On modified method of simplest equation for obtaining exact solutions of nonlinear PDEs: case of elliptic simplest equation. Pliska Studia Mathematica Bulgarica 21, 257 – 266 (2012). Vitanov, N. K.: On modified method of simplest equation for obtaining exact solutions of nonlinear PDEs: case of elliptic simplest equation. Pliska Studia Mathematica Bulgarica 21, 257 – 266 (2012).
69.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. Applied Mathematics and Computation 219, 7480 – 7492 (2013). https://doi.org/10.1016/j.amc.2013.01.035 Vitanov, N. K., Dimitrova, Z. I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. Applied Mathematics and Computation 219, 7480 – 7492 (2013). https://​doi.​org/​10.​1016/​j.​amc.​2013.​01.​035
72.
73.
go back to reference Dimitrova, Z.I.: Relation between G’/G-expansion method and the modified method of simplest equation. Compt. rend. Acad. bulg. Scie 65, 1513 – 1520 (2012). Dimitrova, Z.I.: Relation between G’/G-expansion method and the modified method of simplest equation. Compt. rend. Acad. bulg. Scie 65, 1513 – 1520 (2012).
74.
go back to reference Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Applied Mathematics and Computation 269, 363 – 378 (2015). https://doi.org/10.1016/j.amc.2015.07.060 Vitanov, N. K., Dimitrova, Z. I., Vitanov, K. N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Applied Mathematics and Computation 269, 363 – 378 (2015). https://​doi.​org/​10.​1016/​j.​amc.​2015.​07.​060
75.
76.
go back to reference Vitanov, N. K., Dimitrova, Z. I.: On the modified method of simplest equation and the nonlinear Schrödinger equation. Journal of Theoretical and Applied Mechanics 48, 59 – 68 (2018). Vitanov, N. K., Dimitrova, Z. I.: On the modified method of simplest equation and the nonlinear Schrödinger equation. Journal of Theoretical and Applied Mechanics 48, 59 – 68 (2018).
78.
go back to reference Jordanov, I.P., Vitanov, N.K.: On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol. 793, pp. 199 – 210. Springer, Cham. (2019). https://doi.org/10.1007/978-3-319-97277-0_16 Jordanov, I.P., Vitanov, N.K.: On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol. 793, pp. 199 – 210. Springer, Cham. (2019). https://​doi.​org/​10.​1007/​978-3-319-97277-0_​16
79.
go back to reference Nikolova, E. V., Chilikova-Lubomirova, M., Vitanov, N. K.: Exact solutions of a fifth-order Korteweg-de Vries-type equation modeling nonlinear long waves in several natural phenomena. AIP Conference Proceedings vol. 2321, 030026 (2021). https://doi.org/10.1063/5.0040089 Nikolova, E. V., Chilikova-Lubomirova, M., Vitanov, N. K.: Exact solutions of a fifth-order Korteweg-de Vries-type equation modeling nonlinear long waves in several natural phenomena. AIP Conference Proceedings vol. 2321, 030026 (2021). https://​doi.​org/​10.​1063/​5.​0040089
81.
go back to reference Dimitrova, Z. I.: On several specific cases of the simple equations method (SEsM): Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method, general projective Riccati equations method, and first intergal method. AIP Conference Proceedings, vol. 2459, 030006 (2022). https://doi.org/10.1063/5.0083573 Dimitrova, Z. I.: On several specific cases of the simple equations method (SEsM): Jacobi elliptic function expansion method, F-expansion method, modified simple equation method, trial function method, general projective Riccati equations method, and first intergal method. AIP Conference Proceedings, vol. 2459, 030006 (2022). https://​doi.​org/​10.​1063/​5.​0083573
90.
Metadata
Title
Several Relationships Connected to a Special Function Used in the Simple Equations Method (SEsM)
Author
Nikolay K. Vitanov
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-53212-2_4

Premium Partner