Skip to main content


Swipe to navigate through the articles of this issue

13-04-2017 | Original Article | Issue 3/2017 Open Access

Chinese Journal of Mechanical Engineering 3/2017

Shape Error Analysis of Functional Surface Based on Isogeometrical Approach

Chinese Journal of Mechanical Engineering > Issue 3/2017
Pei YUAN, Zhenyu LIU, Jianrong TAN
Important notes
Supported by National Natural Science Foundation of China (Grant Nos. 51490663, 51475418, 51521064), and Zhejiang Provincal Key Development Program of China (Grant No. 2017C01045).


The construction of traditional finite element geometry (i.e., the meshing procedure) is time consuming and creates geometric errors. The drawbacks can be overcame by the Isogeometric Analysis (IGA), which integrates the computer aided design and structural analysis in a unified way. A new IGA beam element is developed by integrating the displacement field of the element, which is approximated by the NURBS basis, with the internal work formula of Euler-Bernoulli beam theory with the small deformation and elastic assumptions. Two cases of the strong coupling of IGA elements, “beam to beam” and “beam to shell”, are also discussed. The maximum relative errors of the deformation in the three directions of cantilever beam benchmark problem between analytical solutions and IGA solutions are less than 0.1%, which illustrate the good performance of the developed IGA beam element. In addition, the application of the developed IGA beam element in the Root Mean Square (RMS) error analysis of reflector antenna surface, which is a kind of typical functional surface whose precision is closely related to the product’s performance, indicates that no matter how coarse the discretization is, the IGA method is able to achieve the accurate solution with less degrees of freedom than standard Finite Element Analysis (FEA). The proposed research provides an effective alternative to standard FEA for shape error analysis of functional surface.

Our product recommendations

Premium-Abo der Gesellschaft für Informatik

Sie erhalten uneingeschränkten Vollzugriff auf alle acht Fachgebiete von Springer Professional und damit auf über 45.000 Fachbücher und ca. 300 Fachzeitschriften.

About this article

Other articles of this Issue 3/2017

Chinese Journal of Mechanical Engineering 3/2017 Go to the issue

Premium Partners

    Image Credits