Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2023 | OriginalPaper | Chapter

13. Shape Memory Supercapacitors

Authors : Mukesh Kumar, Manas K. Ghorai, Kamal K. Kar

Published in: Handbook of Nanocomposite Supercapacitor Materials IV

Publisher: Springer International Publishing

Abstract

Nowadays, the increasing demand for energy storage devices and high-power density compared to batteries makes promising supercapacitor candidates for commercial application. Shape memory properties are seamlessly integrated with the supercapacitor to fulfill the stable energy requirement of flexible devices. Considerable research gained attention to developing shape memory supercapacitors in electrochemical energy devices. Different shape memory materials have been used to assemble the device and study the electrochemical performance, cyclic stability, etc. We have reviewed and explained shape memory materials types, such as shape memory alloy (SMA) and shape memory polymer (SMP). Both types of material have unique intrinsic shape memory properties such as strain recovery (Rr), shape fixity (Rf), and recovery time. Mainly heat-triggered shape memory material is used in the application, and its transition temperature largely depends on the material and material composition. The flexibility of the shape memory device depends on the design, architecture, materials, etc.; wire-shaped and planar devices have been studied extensively. Symmetric and asymmetric shape memory supercapacitors have been reviewed. Apart from this principle behind shape memory properties, the design aspect and electrochemical performance of recent advancements in SMSC have been reported.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C. 120, 4153–4172 (2016) CrossRef W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, Flexible graphene-based supercapacitors: a review. J. Phys. Chem. C. 120, 4153–4172 (2016) CrossRef
2.
go back to reference M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013) CrossRef M. Vangari, T. Pryor, L. Jiang, Supercapacitors: review of materials and fabrication methods. J. Energy Eng. 139, 72–79 (2013) CrossRef
5.
go back to reference B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, in Handbook of Clean Energy Systems (Wiley, Chichester, UK, 2015), pp. 1–25 B.K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, in Handbook of Clean Energy Systems (Wiley, Chichester, UK, 2015), pp. 1–25
6.
go back to reference Poonam, K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: materials and devices, J. Energy Storage. 21, 801–825 (2019) Poonam, K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: materials and devices, J. Energy Storage. 21, 801–825 (2019)
7.
go back to reference L. Kouchachvili, W. Yaïci, E. Entchev, Hybrid battery/supercapacitor energy storage system for the electric vehicles. J. Power Sources. 374, 237–248 (2018) CrossRef L. Kouchachvili, W. Yaïci, E. Entchev, Hybrid battery/supercapacitor energy storage system for the electric vehicles. J. Power Sources. 374, 237–248 (2018) CrossRef
10.
12.
go back to reference A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145 (2019) CrossRef A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145 (2019) CrossRef
20.
go back to reference B. Ye, C. Gong, M. Huang, J. Ge, L. Fan, J. Lin, J. Wu, A high-performance asymmetric supercapacitor based on Ni 3 S 2-coated NiSe arrays as positive electrode. New J. Chem. 43, 2389–2399 (2019) CrossRef B. Ye, C. Gong, M. Huang, J. Ge, L. Fan, J. Lin, J. Wu, A high-performance asymmetric supercapacitor based on Ni 3 S 2-coated NiSe arrays as positive electrode. New J. Chem. 43, 2389–2399 (2019) CrossRef
21.
go back to reference A.E. Ostfeld, A.M. Gaikwad, Y. Khan, A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 6, 26122 (2016) CrossRef A.E. Ostfeld, A.M. Gaikwad, Y. Khan, A.C. Arias, High-performance flexible energy storage and harvesting system for wearable electronics. Sci. Rep. 6, 26122 (2016) CrossRef
22.
go back to reference F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6, 1623 (2013) CrossRef F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ. Sci. 6, 1623 (2013) CrossRef
23.
go back to reference A. Vlad, N. Singh, J. Rolland, S. Melinte, P.M. Ajayan, J.-F. Gohy, Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4, 4315 (2015) CrossRef A. Vlad, N. Singh, J. Rolland, S. Melinte, P.M. Ajayan, J.-F. Gohy, Hybrid supercapacitor-battery materials for fast electrochemical charge storage. Sci. Rep. 4, 4315 (2015) CrossRef
26.
go back to reference T. Li, X. Fang, Q. Pang, W. Huang, J. Sun, Healable and shape editable supercapacitors based on shape memory polyurethanes. J. Mater. Chem. A. 7, 17456–17465 (2019) CrossRef T. Li, X. Fang, Q. Pang, W. Huang, J. Sun, Healable and shape editable supercapacitors based on shape memory polyurethanes. J. Mater. Chem. A. 7, 17456–17465 (2019) CrossRef
27.
go back to reference D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018) CrossRef D.P. Dubal, N.R. Chodankar, D.-H. Kim, P. Gomez-Romero, Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 47, 2065–2129 (2018) CrossRef
28.
go back to reference H. Wang, B. Zhu, W. Jiang, Y. Yang, W.R. Leow, H. Wang, X. Chen, A mechanically and electrically self-healing supercapacitor. Adv. Mater. 26, 3638–3643 (2014) CrossRef H. Wang, B. Zhu, W. Jiang, Y. Yang, W.R. Leow, H. Wang, X. Chen, A mechanically and electrically self-healing supercapacitor. Adv. Mater. 26, 3638–3643 (2014) CrossRef
29.
go back to reference Y. Huang, Y. Huang, M. Zhu, W. Meng, Z. Pei, C. Liu, H. Hu, C. Zhi, Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015) CrossRef Y. Huang, Y. Huang, M. Zhu, W. Meng, Z. Pei, C. Liu, H. Hu, C. Zhi, Magnetic-assisted, self-healable, yarn-based supercapacitor. ACS Nano 9, 6242–6251 (2015) CrossRef
30.
go back to reference P. Dong, M.-T.F. Rodrigues, J. Zhang, R.S. Borges, K. Kalaga, A.L.M. Reddy, G.G. Silva, P.M. Ajayan, J. Lou, A flexible solar cell/supercapacitor integrated energy device. Nano Energy 42, 181–186 (2017) CrossRef P. Dong, M.-T.F. Rodrigues, J. Zhang, R.S. Borges, K. Kalaga, A.L.M. Reddy, G.G. Silva, P.M. Ajayan, J. Lou, A flexible solar cell/supercapacitor integrated energy device. Nano Energy 42, 181–186 (2017) CrossRef
31.
go back to reference X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chemie Int. Ed. 53, 1849–1853 (2014) CrossRef X. Wang, B. Liu, R. Liu, Q. Wang, X. Hou, D. Chen, R. Wang, G. Shen, Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. Angew. Chemie Int. Ed. 53, 1849–1853 (2014) CrossRef
32.
go back to reference L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014) CrossRef L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, C. Gao, Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014) CrossRef
33.
go back to reference G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources. 196, 1–12 (2011) CrossRef G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources. 196, 1–12 (2011) CrossRef
34.
go back to reference C. Rao, Transition metal oxides. Annu. Rev. Phys. Chem. 40, 291–326 (1989) CrossRef C. Rao, Transition metal oxides. Annu. Rev. Phys. Chem. 40, 291–326 (1989) CrossRef
36.
go back to reference L. Li, Z. Wu, S. Yuan, X.-B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7, 2101 (2014) CrossRef L. Li, Z. Wu, S. Yuan, X.-B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 7, 2101 (2014) CrossRef
37.
go back to reference X.-J. Han, Z.-Q. Dong, M.-M. Fan, Y. Liu, J.-H. Li, Y.-F. Wang, Q.-J. Yuan, B.-J. Li, S. Zhang, pH-Induced shape-memory polymers. Macromol. Rapid Commun. 33, 1055–1060 (2012) CrossRef X.-J. Han, Z.-Q. Dong, M.-M. Fan, Y. Liu, J.-H. Li, Y.-F. Wang, Q.-J. Yuan, B.-J. Li, S. Zhang, pH-Induced shape-memory polymers. Macromol. Rapid Commun. 33, 1055–1060 (2012) CrossRef
38.
go back to reference W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015) CrossRef W. Guo, C.-H. Lu, R. Orbach, F. Wang, X.-J. Qi, A. Cecconello, D. Seliktar, I. Willner, pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 27, 73–78 (2015) CrossRef
39.
go back to reference J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011) CrossRef J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011) CrossRef
40.
go back to reference A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005) CrossRef A. Lendlein, H. Jiang, O. Jünger, R. Langer, Light-induced shape-memory polymers. Nature 434, 879–882 (2005) CrossRef
41.
go back to reference C.P. Frick, A.M. Ortega, J. Tyber, A.E.M. Maksound, H.J. Maier, Y. Liu, K. Gall, Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng. A. 405, 34–49 (2005) CrossRef C.P. Frick, A.M. Ortega, J. Tyber, A.E.M. Maksound, H.J. Maier, Y. Liu, K. Gall, Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng. A. 405, 34–49 (2005) CrossRef
42.
go back to reference B.K. Deka, A. Hazarika, J. Kim, N. Kim, H.E. Jeong, Y.-B. Park, H.W. Park, Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem. Eng. J. 355, 551–559 (2019) CrossRef B.K. Deka, A. Hazarika, J. Kim, N. Kim, H.E. Jeong, Y.-B. Park, H.W. Park, Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chem. Eng. J. 355, 551–559 (2019) CrossRef
43.
go back to reference L. Liu, B. Shen, D. Jiang, R. Guo, L. Kong, X. Yan, Watchband-like supercapacitors with body temperature inducible shape memory ability. Adv. Energy Mater. 6, 1600763 (2016) CrossRef L. Liu, B. Shen, D. Jiang, R. Guo, L. Kong, X. Yan, Watchband-like supercapacitors with body temperature inducible shape memory ability. Adv. Energy Mater. 6, 1600763 (2016) CrossRef
45.
go back to reference M.O. Gök, M.Z. Bilir, B.H. Gürcüm, Shape-memory applications in textile design. Proc. Soc. Behav. Sci. 195, 2160–2169 (2015) CrossRef M.O. Gök, M.Z. Bilir, B.H. Gürcüm, Shape-memory applications in textile design. Proc. Soc. Behav. Sci. 195, 2160–2169 (2015) CrossRef
46.
go back to reference H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf). 54, 2199–2221 (2013) CrossRef H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites. Polymer (Guildf). 54, 2199–2221 (2013) CrossRef
47.
go back to reference L. Peponi, I. Navarro-Baena, J.M. Kenny, Shape memory polymers: properties, synthesis and applications, in Smart Polymers and Their Applications (Elsevier, 2014), pp. 204–236 L. Peponi, I. Navarro-Baena, J.M. Kenny, Shape memory polymers: properties, synthesis and applications, in Smart Polymers and Their Applications (Elsevier, 2014), pp. 204–236
48.
go back to reference E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, H. Tobushi, Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp. Mech. 46, 531–542 (2006) CrossRef E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, H. Tobushi, Phase-transformation fronts evolution for stress- and strain-controlled tension tests in TiNi shape memory alloy. Exp. Mech. 46, 531–542 (2006) CrossRef
49.
go back to reference R.M. Manjeri, D. Norwich, F. Sczerzenie, X. Huang, M. Long, M. Ehrlinspiel, A study of thermo-mechanically processed high stiffness NiTiCo shape memory alloy. J. Mater. Eng. Perform. 25, 894–900 (2016) CrossRef R.M. Manjeri, D. Norwich, F. Sczerzenie, X. Huang, M. Long, M. Ehrlinspiel, A study of thermo-mechanically processed high stiffness NiTiCo shape memory alloy. J. Mater. Eng. Perform. 25, 894–900 (2016) CrossRef
50.
go back to reference Y. Zhang, S. Jiang, X. Zhu, Y. Zhao, Y. Liang, D. Sun, Influence of Fe addition on phase transformation behavior of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China. 27, 1580–1587 (2017) CrossRef Y. Zhang, S. Jiang, X. Zhu, Y. Zhao, Y. Liang, D. Sun, Influence of Fe addition on phase transformation behavior of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China. 27, 1580–1587 (2017) CrossRef
51.
go back to reference G. Firstov, J. Van Humbeeck, Y. Koval, High-temperature shape memory alloys. Mater. Sci. Eng. A. 378, 2–10 (2004) CrossRef G. Firstov, J. Van Humbeeck, Y. Koval, High-temperature shape memory alloys. Mater. Sci. Eng. A. 378, 2–10 (2004) CrossRef
52.
go back to reference A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi, M. Motavalli, Iron-based shape memory alloys for civil engineering structures: An overview. Constr. Build. Mater. 63, 281–293 (2014) CrossRef A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi, M. Motavalli, Iron-based shape memory alloys for civil engineering structures: An overview. Constr. Build. Mater. 63, 281–293 (2014) CrossRef
53.
go back to reference K.K. Alaneme, E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options—A review of copper and iron based shape memory metallic systems. Eng. Sci. Technol. an Int. J. 19, 1582–1592 (2016) CrossRef K.K. Alaneme, E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options—A review of copper and iron based shape memory metallic systems. Eng. Sci. Technol. an Int. J. 19, 1582–1592 (2016) CrossRef
54.
go back to reference T. Treatments, Phase change behavior of nitinol shape memory alloys influence of heat and thermomechanical treatments, 437–451 (2002) T. Treatments, Phase change behavior of nitinol shape memory alloys influence of heat and thermomechanical treatments, 437–451 (2002)
55.
go back to reference S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, J.H. Huang, M.C. Lin, A study of TiNiCr ternary shape memory alloys. J. Alloys Compd. 494, 155–160 (2010) CrossRef S.F. Hsieh, S.L. Chen, H.C. Lin, M.H. Lin, J.H. Huang, M.C. Lin, A study of TiNiCr ternary shape memory alloys. J. Alloys Compd. 494, 155–160 (2010) CrossRef
56.
go back to reference M. Elahinia, N. Shayesteh Moghaddam, A. Amerinatanzi, S. Saedi, G.P. Toker, H. Karaca, G.S. Bigelow, O. Benafan, Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr. Mater. 145, 90–94 (2018) M. Elahinia, N. Shayesteh Moghaddam, A. Amerinatanzi, S. Saedi, G.P. Toker, H. Karaca, G.S. Bigelow, O. Benafan, Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr. Mater. 145, 90–94 (2018)
57.
go back to reference K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.I. Chumlyakov, I.V. Kireeva, Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall. Mater. Trans. A. 41, 2485–2497 (2010) K.C. Atli, I. Karaman, R.D. Noebe, A. Garg, Y.I. Chumlyakov, I.V. Kireeva, Improvement in the shape memory response of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy with scandium microalloying. Metall. Mater. Trans. A. 41, 2485–2497 (2010)
58.
go back to reference J. Wu, Q. Tian, The superelasticity of TiPdNi high temperature shape memory alloy. Intermetallics 11, 773–778 (2003) CrossRef J. Wu, Q. Tian, The superelasticity of TiPdNi high temperature shape memory alloy. Intermetallics 11, 773–778 (2003) CrossRef
59.
go back to reference R. Santamarta, R. Arróyave, J. Pons, A. Evirgen, I. Karaman, H.E. Karaca, R.D. Noebe, TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti–Hf and Ni-Ti–Zr shape memory alloys. Acta Mater. 61, 6191–6206 (2013) CrossRef R. Santamarta, R. Arróyave, J. Pons, A. Evirgen, I. Karaman, H.E. Karaca, R.D. Noebe, TEM study of structural and microstructural characteristics of a precipitate phase in Ni-rich Ni-Ti–Hf and Ni-Ti–Zr shape memory alloys. Acta Mater. 61, 6191–6206 (2013) CrossRef
60.
go back to reference T.M. Butler, J.P. Alfano, R.L. Martens, M.L. Weaver, High-Temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM. 67, 246–259 (2015) CrossRef T.M. Butler, J.P. Alfano, R.L. Martens, M.L. Weaver, High-Temperature oxidation behavior of Al–Co–Cr–Ni–(Fe or Si) multicomponent high-entropy alloys. JOM. 67, 246–259 (2015) CrossRef
61.
go back to reference J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014) J. Mohd Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)
62.
go back to reference H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009) CrossRef H.E. Karaca, I. Karaman, B. Basaran, Y. Ren, Y.I. Chumlyakov, H.J. Maier, Magnetic field-induced phase transformation in NiMnCoIn magnetic shape-memory alloys—A new actuation mechanism with large work output. Adv. Funct. Mater. 19, 983–998 (2009) CrossRef
63.
go back to reference L.G. Machado, D.C. Lagoudas, Shape Memory Alloys (Springer, US, Boston, MA, 2008) L.G. Machado, D.C. Lagoudas, Shape Memory Alloys (Springer, US, Boston, MA, 2008)
64.
go back to reference J. Li, W.R. Rodgers, T. Xie, Semi-crystalline two-way shape memory elastomer. Polymer (Guildf). 52, 5320–5325 (2011) CrossRef J. Li, W.R. Rodgers, T. Xie, Semi-crystalline two-way shape memory elastomer. Polymer (Guildf). 52, 5320–5325 (2011) CrossRef
65.
go back to reference Y. Huang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, A shape memory supercapacitor and its application in smart energy storage textiles. J. Mater. Chem. A. 4, 1290–1297 (2016) CrossRef Y. Huang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, A shape memory supercapacitor and its application in smart energy storage textiles. J. Mater. Chem. A. 4, 1290–1297 (2016) CrossRef
66.
go back to reference M. Shi, C. Yang, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Recoverable wire-shaped supercapacitors with ultrahigh volumetric energy density for multifunctional portable and wearable electronics. ACS Appl. Mater. Interfaces. 9, 17051–17059 (2017) CrossRef M. Shi, C. Yang, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Recoverable wire-shaped supercapacitors with ultrahigh volumetric energy density for multifunctional portable and wearable electronics. ACS Appl. Mater. Interfaces. 9, 17051–17059 (2017) CrossRef
67.
go back to reference C. Schick, Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 395, 1589–1611 (2009) CrossRef C. Schick, Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal. Bioanal. Chem. 395, 1589–1611 (2009) CrossRef
68.
go back to reference D.A. Ivanov, Semicrystalline polymers, in Polymer Science. A Comprehensive Reference (Elsevier, 2012), pp. 227–258 D.A. Ivanov, Semicrystalline polymers, in Polymer Science. A Comprehensive Reference (Elsevier, 2012), pp. 227–258
69.
go back to reference Q. Meng, J. Hu, A review of shape memory polymer composites and blends. Compos. Part A Appl. Sci. Manuf. 40, 1661–1672 (2009) CrossRef Q. Meng, J. Hu, A review of shape memory polymer composites and blends. Compos. Part A Appl. Sci. Manuf. 40, 1661–1672 (2009) CrossRef
70.
go back to reference M. Haghayegh, G. Mir Mohamad Sadeghi, Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties. Polym. Compos. 33, 843–849 (2012) M. Haghayegh, G. Mir Mohamad Sadeghi, Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties. Polym. Compos. 33, 843–849 (2012)
71.
go back to reference D. Ratna, J. Karger-Kocsis, Recent advances in shape memory polymers and composites: A review. J. Mater. Sci. 43, 254–269 (2008) CrossRef D. Ratna, J. Karger-Kocsis, Recent advances in shape memory polymers and composites: A review. J. Mater. Sci. 43, 254–269 (2008) CrossRef
72.
go back to reference B.S. Lee, B.C. Chun, Y.C. Chung, K. Il Sul, J.W. Cho, Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34, 6431–6437 (2001) B.S. Lee, B.C. Chun, Y.C. Chung, K. Il Sul, J.W. Cho, Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 34, 6431–6437 (2001)
73.
go back to reference I.A. Rousseau, P.T. Mather, Shape memory effect exhibited by Smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300–15301 (2003) CrossRef I.A. Rousseau, P.T. Mather, Shape memory effect exhibited by Smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300–15301 (2003) CrossRef
74.
go back to reference Y. Liu, C. Han, H. Tan, X. Du, Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A. 527, 2510–2514 (2010) CrossRef Y. Liu, C. Han, H. Tan, X. Du, Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A. 527, 2510–2514 (2010) CrossRef
75.
go back to reference I.A. Rousseau, T. Xie, Shape memory epoxy: Composition, structure, properties and shape memory performances. J. Mater. Chem. 20, 3431 (2010) CrossRef I.A. Rousseau, T. Xie, Shape memory epoxy: Composition, structure, properties and shape memory performances. J. Mater. Chem. 20, 3431 (2010) CrossRef
76.
go back to reference Liulan Lin, Q. Zhou, M. Li, Thermal and electroactive shape memory behaviors of polyvinyl alcohol/short carbon fiber composites. Polym. Sci. Ser. A. 61, 913–921 (2019) Liulan Lin, Q. Zhou, M. Li, Thermal and electroactive shape memory behaviors of polyvinyl alcohol/short carbon fiber composites. Polym. Sci. Ser. A. 61, 913–921 (2019)
77.
go back to reference S. Gu, B. Yan, L. Liu, J. Ren, Carbon nanotube–polyurethane shape memory nanocomposites with low trigger temperature. Eur. Polym. J. 49, 3867–3877 (2013) CrossRef S. Gu, B. Yan, L. Liu, J. Ren, Carbon nanotube–polyurethane shape memory nanocomposites with low trigger temperature. Eur. Polym. J. 49, 3867–3877 (2013) CrossRef
78.
go back to reference B. Gieseking, B. Jäck, E. Preis, S. Jung, M. Forster, U. Scherf, C. Deibel, V. Dyakonov, Excitation dynamics in low band gap donor-acceptor copolymers and blends. Polym. Polym. Compos. 16, 101–113 (2012) B. Gieseking, B. Jäck, E. Preis, S. Jung, M. Forster, U. Scherf, C. Deibel, V. Dyakonov, Excitation dynamics in low band gap donor-acceptor copolymers and blends. Polym. Polym. Compos. 16, 101–113 (2012)
79.
go back to reference D. Kai, M.J. Tan, M.P. Prabhakaran, B.Q.Y. Chan, S.S. Liow, S. Ramakrishna, X.J. Loh, Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids Surfaces B Biointerfaces. 148, 557–565 (2016) CrossRef D. Kai, M.J. Tan, M.P. Prabhakaran, B.Q.Y. Chan, S.S. Liow, S. Ramakrishna, X.J. Loh, Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids Surfaces B Biointerfaces. 148, 557–565 (2016) CrossRef
81.
go back to reference H.M. Jeong, B.K. Ahn, B.K. Kim, Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur. Polym. J. 37, 2245–2252 (2001) CrossRef H.M. Jeong, B.K. Ahn, B.K. Kim, Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin. Eur. Polym. J. 37, 2245–2252 (2001) CrossRef
82.
go back to reference J. You, H. Fu, W. Dong, L. Zhao, X. Cao, Y. Li, Shape memory performance of thermoplastic polyvinylidene fluoride/acrylic copolymer blends physically cross-linked by tiny crystals. ACS Appl. Mater. Interfaces. 4, 4825–4831 (2012) CrossRef J. You, H. Fu, W. Dong, L. Zhao, X. Cao, Y. Li, Shape memory performance of thermoplastic polyvinylidene fluoride/acrylic copolymer blends physically cross-linked by tiny crystals. ACS Appl. Mater. Interfaces. 4, 4825–4831 (2012) CrossRef
83.
go back to reference H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer (Guildf). 50, 1596–1601 (2009) CrossRef H. Zhang, H. Wang, W. Zhong, Q. Du, A novel type of shape memory polymer blend and the shape memory mechanism. Polymer (Guildf). 50, 1596–1601 (2009) CrossRef
84.
go back to reference R. Sattar, A. Kausar, M. Siddiq, Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends. Chin. J. Polym. Sci. 33, 1313–1324 (2015) CrossRef R. Sattar, A. Kausar, M. Siddiq, Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends. Chin. J. Polym. Sci. 33, 1313–1324 (2015) CrossRef
85.
go back to reference L.-S. Wang, H.-C. Chen, Z.-C. Xiong, X.-B. Pang, C.-D. Xiong, Novel degradable compound shape-memory-polymer blend: Mechanical and shape-memory properties. Mater. Lett. 64, 284–286 (2010) CrossRef L.-S. Wang, H.-C. Chen, Z.-C. Xiong, X.-B. Pang, C.-D. Xiong, Novel degradable compound shape-memory-polymer blend: Mechanical and shape-memory properties. Mater. Lett. 64, 284–286 (2010) CrossRef
86.
go back to reference X. Xu, P. Fan, J. Ren, Y. Cheng, J. Ren, J. Zhao, R. Song, Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos. Sci. Technol. 168, 255–262 (2018) CrossRef X. Xu, P. Fan, J. Ren, Y. Cheng, J. Ren, J. Zhao, R. Song, Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shape-memory composites. Compos. Sci. Technol. 168, 255–262 (2018) CrossRef
87.
go back to reference X.L. Wu, W.M. Huang, H.B. Lu, C.C. Wang, H.P. Cui, Characterization of polymeric shape memory materials. J. Polym. Eng. 37, 1–20 (2017) CrossRef X.L. Wu, W.M. Huang, H.B. Lu, C.C. Wang, H.P. Cui, Characterization of polymeric shape memory materials. J. Polym. Eng. 37, 1–20 (2017) CrossRef
88.
go back to reference J. Deng, Y. Zhang, Y. Zhao, P. Chen, X. Cheng, H. Peng, A shape-memory supercapacitor fiber. Angew. Chemie Int. Ed. 54, 15419–15423 (2015) CrossRef J. Deng, Y. Zhang, Y. Zhao, P. Chen, X. Cheng, H. Peng, A shape-memory supercapacitor fiber. Angew. Chemie Int. Ed. 54, 15419–15423 (2015) CrossRef
89.
go back to reference Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Recent progress on flexible and wearable supercapacitors. Small 13, 1701827 (2017) CrossRef Q. Xue, J. Sun, Y. Huang, M. Zhu, Z. Pei, H. Li, Y. Wang, N. Li, H. Zhang, C. Zhi, Recent progress on flexible and wearable supercapacitors. Small 13, 1701827 (2017) CrossRef
90.
go back to reference J. Hiltz, Shape Memory Polymers. Literature Review (Literature Review Defence R & D Canada, 2016) J. Hiltz, Shape Memory Polymers. Literature Review (Literature Review Defence R & D Canada, 2016)
91.
go back to reference J. Diani, K. Gall, Finite Strain 3D Thermoviscoelastic Constitutive Model, Society (2006) J. Diani, K. Gall, Finite Strain 3D Thermoviscoelastic Constitutive Model, Society (2006)
92.
go back to reference X. Xiao, D. Kong, X. Qiu, W. Zhang, F. Zhang, L. Liu, Y. Liu, S. Zhang, Y. Hu, J. Leng, Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 48, 3582–3589 (2015) CrossRef X. Xiao, D. Kong, X. Qiu, W. Zhang, F. Zhang, L. Liu, Y. Liu, S. Zhang, Y. Hu, J. Leng, Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 48, 3582–3589 (2015) CrossRef
101.
go back to reference Y.-Y. Ma, G.-B. Yi, J.-C. Wang, H. Wang, H.-S. Luo, X.-H. Zu, Shape-controllable and -tailorable multi-walled carbon nanotube/MnO 2/shape-memory polyurethane composite film for supercapacitor. Synth. Met. 223, 67–72 (2017) CrossRef Y.-Y. Ma, G.-B. Yi, J.-C. Wang, H. Wang, H.-S. Luo, X.-H. Zu, Shape-controllable and -tailorable multi-walled carbon nanotube/MnO 2/shape-memory polyurethane composite film for supercapacitor. Synth. Met. 223, 67–72 (2017) CrossRef
102.
go back to reference J. Zhong, J. Meng, Z. Yang, P. Poulin, N. Koratkar, Shape memory fiber supercapacitors. Nano Energy 17, 330–338 (2015) CrossRef J. Zhong, J. Meng, Z. Yang, P. Poulin, N. Koratkar, Shape memory fiber supercapacitors. Nano Energy 17, 330–338 (2015) CrossRef
Metadata
Title
Shape Memory Supercapacitors
Authors
Mukesh Kumar
Manas K. Ghorai
Kamal K. Kar
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-23701-0_13

Premium Partners