Skip to main content
Top
Published in: Journal of Materials Science 22/2018

25-07-2018 | Composites

Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials

Authors: Dajun Luo, Fujian Wei, Huiju Shao, Li Xiang, Jingkui Yang, Zhenyu Cui, Shuhao Qin, Jie Yu

Published in: Journal of Materials Science | Issue 22/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Flexible shape-stabilized composite phase change materials (ss-CPCMs) have a wide range of potential applications because they can be woven into desired shapes. In this work, a series of novel flexible paraffin/multi-walled carbon nanotubes (MWCNTs)/polypropylene hollow fiber membrane (PHFM) ss-CPCMs (PC-PHFM-CPCMs) with weavability were fabricated for thermal energy storage. In order to select a PHFM with optimum stretching ratio as the supporting material for the flexible ss-CPCMs, PHFMs with different stretching ratios were fabricated to encapsulate the paraffin as novel flexible ss-CPCMs (P-PHFM-CPCMs). The effects of stretching ratios on the latent heats and absorption capacity were investigated. PHFM200 (polypropylene hollow fiber stretched by 200%) showed the high porosity (65.2%) and tensile strength (119.9 MPa), and the corresponding P-PHFM-CPCM200 had the largest latent heats in the melting process and solidifying process (73.90 and 76.71 J/g) and maximum paraffin absorption capacity (52.42 wt%) compared to other candidates. Paraffin/MWCNTs mixtures with high thermal conductivity were injected into the columned cavity of P-PHFM-CPCM200 to further enhance the paraffin encapsulation capacity and significantly improve their heat transfer. Among all PC-PHFM-CPCMs, PC0-PHFM-CPCM200 exhibited the maximum paraffin encapsulation capacity of 80.97 wt%. The thermal conductivity of PC-PHFM-CPCMs was obviously enhanced with the increase in the weight ratio of MWCNTs. PC4-PHFM-CPCM200 achieved the highest thermal conductivity of 0.46 W/m K, which was obviously improved by 100%. The corresponding latent heat in the solidification process was 109.2 J/g. In addition, excellent chemical compatibility and thermal stability of PC-PHFM-CPCMs were demonstrated by the Fourier transform infrared spectroscopy and thermo-gravimetric analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef Pielichowska K, Pielichowski K (2014) Phase change materials for thermal energy storage. Prog Mater Sci 65:67–123CrossRef
2.
go back to reference Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615CrossRef Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manag 45:1597–1615CrossRef
3.
go back to reference Hyun DC, Levinson NS, Jeong U, Xia Y (2014) Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew Chem Int Ed 53:3780–3795CrossRef Hyun DC, Levinson NS, Jeong U, Xia Y (2014) Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew Chem Int Ed 53:3780–3795CrossRef
4.
go back to reference Duarte-Silva R, Villa-García MA, Rendueles M, Díaz M (2014) Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Appl Clay Sci 90:73–80CrossRef Duarte-Silva R, Villa-García MA, Rendueles M, Díaz M (2014) Structural, textural and protein adsorption properties of kaolinite and surface modified kaolinite adsorbents. Appl Clay Sci 90:73–80CrossRef
5.
go back to reference Zhang Q, Wang H, Ling Z, Fang X, Zhang Z (2015) RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability. Sol Energy Mater Sol Cells 140:158–166CrossRef Zhang Q, Wang H, Ling Z, Fang X, Zhang Z (2015) RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability. Sol Energy Mater Sol Cells 140:158–166CrossRef
6.
go back to reference Pasupathy A, Velraj R, Seeniraj RV (2008) Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energy Rev 12:39–64CrossRef Pasupathy A, Velraj R, Seeniraj RV (2008) Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew Sustain Energy Rev 12:39–64CrossRef
7.
go back to reference Anuar Sharif MK, Al-Abidib AA, Mat S, Sopian K, Ruslan MH, Sulaiman MY, Rosli MAM (2015) Review of the application of phase change material for heating and domestic hot water systems. Renew Sustain Energy Rev 42:557–568CrossRef Anuar Sharif MK, Al-Abidib AA, Mat S, Sopian K, Ruslan MH, Sulaiman MY, Rosli MAM (2015) Review of the application of phase change material for heating and domestic hot water systems. Renew Sustain Energy Rev 42:557–568CrossRef
8.
go back to reference Agyenim F, Hewitt N (2010) The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation. Energy Build 42:1552–1560CrossRef Agyenim F, Hewitt N (2010) The development of a finned phase change material (PCM) storage system to take advantage of off-peak electricity tariff for improvement in cost of heat pump operation. Energy Build 42:1552–1560CrossRef
9.
go back to reference Moon GD, Choi SW, Cai X, Li WY, Cho EC, Jeong U, Wang LHV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133:4762–4765CrossRef Moon GD, Choi SW, Cai X, Li WY, Cho EC, Jeong U, Wang LHV, Xia Y (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133:4762–4765CrossRef
10.
go back to reference Zhang Q, He ZB, Fang XM, Zhang XW, Zhang ZG (2017) Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater 6:36–45CrossRef Zhang Q, He ZB, Fang XM, Zhang XW, Zhang ZG (2017) Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask. Energy Storage Mater 6:36–45CrossRef
11.
go back to reference Mondal S (2008) Phase change materials for smart textiles-an overview. Appl Therm Eng 28:1536–1550CrossRef Mondal S (2008) Phase change materials for smart textiles-an overview. Appl Therm Eng 28:1536–1550CrossRef
12.
go back to reference Iqbal K, Sun DM (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energy 71:473–479CrossRef Iqbal K, Sun DM (2014) Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials. Renew Energy 71:473–479CrossRef
13.
go back to reference Arteconi A, Hewitt NJ, Polonara F (2012) State of the art of thermal storage for demand side management. Appl Energy 93:371–389CrossRef Arteconi A, Hewitt NJ, Polonara F (2012) State of the art of thermal storage for demand side management. Appl Energy 93:371–389CrossRef
14.
go back to reference Guan WM, Li JH, Qian TT, Wang X, Deng Y (2015) Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem Eng J 277:56–63CrossRef Guan WM, Li JH, Qian TT, Wang X, Deng Y (2015) Preparation of paraffin/expanded vermiculite with enhanced thermal conductivity by implanting network carbon in vermiculite layers. Chem Eng J 277:56–63CrossRef
15.
go back to reference Li M, Guo QG, Nutt S (2017) Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol Energy 146:1–7CrossRef Li M, Guo QG, Nutt S (2017) Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage. Sol Energy 146:1–7CrossRef
16.
go back to reference Konuklua Y, Ersoy O (2017) Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Sol Energy Mater Sol Cells 168:130–135CrossRef Konuklua Y, Ersoy O (2017) Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Sol Energy Mater Sol Cells 168:130–135CrossRef
17.
go back to reference Tang BT, Wei HP, Zhao DF, Zhang SF (2017) Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping. Sol Energy Mater Sol Cells 161:183–189CrossRef Tang BT, Wei HP, Zhao DF, Zhang SF (2017) Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping. Sol Energy Mater Sol Cells 161:183–189CrossRef
18.
go back to reference Pan L, Zhang QH, Wang SS, Zhang J, Wang SH, Wang ZY, Zhang ZP (2012) Preparation, characterization, and thermal properties of microencapsulated phase change materials. Sol Energy Mater Sol Cells 98:66–70CrossRef Pan L, Zhang QH, Wang SS, Zhang J, Wang SH, Wang ZY, Zhang ZP (2012) Preparation, characterization, and thermal properties of microencapsulated phase change materials. Sol Energy Mater Sol Cells 98:66–70CrossRef
19.
go back to reference Mesalhy O, Lafdi K, Elgafy A (2006) Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon 44:2080–2088CrossRef Mesalhy O, Lafdi K, Elgafy A (2006) Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon 44:2080–2088CrossRef
20.
go back to reference Tang BT, Wang LJ, Xu YJ, Xiu JH, Zhang SF (2016) Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 144:1–6CrossRef Tang BT, Wang LJ, Xu YJ, Xiu JH, Zhang SF (2016) Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 144:1–6CrossRef
21.
go back to reference Xu BW, Ma HY, Lu ZY, Li ZJ (2015) Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Appl Energy 160:358–367CrossRef Xu BW, Ma HY, Lu ZY, Li ZJ (2015) Paraffin/expanded vermiculite composite phase change material as aggregate for developing lightweight thermal energy storage cement-based composites. Appl Energy 160:358–367CrossRef
22.
go back to reference Yang D, Shi SL, Xiong L, Guo HJ, Zhang HR, Chen XF, Wang C, Chen XD (2016) Paraffin/Palygorskite composite phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 144:228–234CrossRef Yang D, Shi SL, Xiong L, Guo HJ, Zhang HR, Chen XF, Wang C, Chen XD (2016) Paraffin/Palygorskite composite phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 144:228–234CrossRef
23.
go back to reference Li CC, Fu LJ, Ouyang J, Tang AD, Yang HM (2015) Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl Clay Sci 115:212–220CrossRef Li CC, Fu LJ, Ouyang J, Tang AD, Yang HM (2015) Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl Clay Sci 115:212–220CrossRef
24.
go back to reference Saffar A, Carreau PJ, Ajji A, Kamal MR (2014) Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. J Membr Sci 46:250–261 Saffar A, Carreau PJ, Ajji A, Kamal MR (2014) Development of polypropylene microporous hydrophilic membranes by blending with PP-g-MA and PP-g-AA. J Membr Sci 46:250–261
25.
go back to reference Sari A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27:1271–1277CrossRef Sari A, Karaipekli A (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl Therm Eng 27:1271–1277CrossRef
26.
go back to reference Li WQ, Qu ZG, He YL, Tao YB (2014) Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J Power Sour 255:9–15CrossRef Li WQ, Qu ZG, He YL, Tao YB (2014) Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. J Power Sour 255:9–15CrossRef
27.
go back to reference Qi GQ, Liang CL, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB (2014) Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Sol Energy Mater Sol Cells 123:171–177CrossRef Qi GQ, Liang CL, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB (2014) Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide. Sol Energy Mater Sol Cells 123:171–177CrossRef
28.
go back to reference Qi GQ, Yang J, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB (2015) Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88:196–205CrossRef Qi GQ, Yang J, Bao RY, Liu ZY, Yang W, Xie BH, Yang MB (2015) Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88:196–205CrossRef
29.
go back to reference Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M (2013) Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manag 67:275–282CrossRef Mehrali M, Latibari ST, Mehrali M, Metselaar HSC, Silakhori M (2013) Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers Manag 67:275–282CrossRef
30.
go back to reference Nomura T, Tabuchi K, Zhu CY, Sheng N, Wang SF, Akiyama T (2015) High thermal conductivity phase change composite with percolating carbon fiber network. Appl Energy 154:678–685CrossRef Nomura T, Tabuchi K, Zhu CY, Sheng N, Wang SF, Akiyama T (2015) High thermal conductivity phase change composite with percolating carbon fiber network. Appl Energy 154:678–685CrossRef
31.
go back to reference Sahan N, Fois M, Paksoy H (2015) Improving thermal conductivity phase change materials-A study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells 137:61–67CrossRef Sahan N, Fois M, Paksoy H (2015) Improving thermal conductivity phase change materials-A study of paraffin nanomagnetite composites. Sol Energy Mater Sol Cells 137:61–67CrossRef
32.
go back to reference Lin SC, Alkayiem HH (2016) Evaluation of copper nanoparticles-paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278CrossRef Lin SC, Alkayiem HH (2016) Evaluation of copper nanoparticles-paraffin wax compositions for solar thermal energy storage. Sol Energy 132:267–278CrossRef
33.
go back to reference Cao AJ, Qu JM (2012) Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys 112:4613–4616 Cao AJ, Qu JM (2012) Size dependent thermal conductivity of single-walled carbon nanotubes. J Appl Phys 112:4613–4616
34.
go back to reference Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L (2009) Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. Therm Anal Calorim 95:507–512CrossRef Zeng JL, Cao Z, Yang DW, Xu F, Sun LX, Zhang XF, Zhang L (2009) Effects of MWNTs on phase change enthalpy and thermal conductivity of a solid-liquid organic PCM. Therm Anal Calorim 95:507–512CrossRef
35.
go back to reference Xu BW, Li ZJ (2014) Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72:371–380CrossRef Xu BW, Li ZJ (2014) Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites. Energy 72:371–380CrossRef
36.
go back to reference Richard PW (1976) Morphological mechanics of springy polymers. J Polym Sci Polym Phys Ed 14:603–615 Richard PW (1976) Morphological mechanics of springy polymers. J Polym Sci Polym Phys Ed 14:603–615
37.
go back to reference Samuels RJ (1979) High strength elastic polypropylene. J Polym Sci Polym Phys Ed 17:535–568CrossRef Samuels RJ (1979) High strength elastic polypropylene. J Polym Sci Polym Phys Ed 17:535–568CrossRef
38.
go back to reference Deng Y, Li JH, Qian TT, Guan WM, Li YL, Yin XP (2016) Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem Eng J 295:427–435CrossRef Deng Y, Li JH, Qian TT, Guan WM, Li YL, Yin XP (2016) Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage. Chem Eng J 295:427–435CrossRef
39.
go back to reference Li C, Fu L, Ouyang J, Yang H (2013) Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci Rep 3:1–8 Li C, Fu L, Ouyang J, Yang H (2013) Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage. Sci Rep 3:1–8
40.
go back to reference Deng Y, Li JH, Nian HG (2018) Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: form-stabilization, thermal energy storage behavior and thermal conductivity enhancement. Sol Energy Mater Sol Cells 174:283–291CrossRef Deng Y, Li JH, Nian HG (2018) Polyethylene glycol-enwrapped silicon carbide nanowires network/expanded vermiculite composite phase change materials: form-stabilization, thermal energy storage behavior and thermal conductivity enhancement. Sol Energy Mater Sol Cells 174:283–291CrossRef
41.
go back to reference Hawlader M, Uddin M, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202CrossRef Hawlader M, Uddin M, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202CrossRef
42.
go back to reference Teng T, Cheng C (2013) Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Appl Therm Eng 50:637–644CrossRef Teng T, Cheng C (2013) Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Appl Therm Eng 50:637–644CrossRef
43.
go back to reference Chen LJ, Zou RQ, Xia W et al (2012) Electro- and photo-driven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano 6:10884–10892CrossRef Chen LJ, Zou RQ, Xia W et al (2012) Electro- and photo-driven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano 6:10884–10892CrossRef
44.
go back to reference Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560CrossRef Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560CrossRef
45.
go back to reference Li B, Liu T, Hu L, Wang Y, Gao L (2013) Fabrication and properties of microencapsulated paraffin/SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng 1:374–380CrossRef Li B, Liu T, Hu L, Wang Y, Gao L (2013) Fabrication and properties of microencapsulated paraffin/SiO2 phase change composite for thermal energy storage. ACS Sustain Chem Eng 1:374–380CrossRef
46.
go back to reference Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42CrossRef Wang J, Xie H, Xin Z (2009) Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim Acta 488:39–42CrossRef
Metadata
Title
Shape stabilization, thermal energy storage behavior and thermal conductivity enhancement of flexible paraffin/MWCNTs/PP hollow fiber membrane composite phase change materials
Authors
Dajun Luo
Fujian Wei
Huiju Shao
Li Xiang
Jingkui Yang
Zhenyu Cui
Shuhao Qin
Jie Yu
Publication date
25-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 22/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2722-5

Other articles of this Issue 22/2018

Journal of Materials Science 22/2018 Go to the issue

Premium Partners