Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

12-07-2021 | Regular paper | Issue 9/2021

Knowledge and Information Systems 9/2021

Sharp characterization of optimal minibatch size for stochastic finite sum convex optimization

Journal:
Knowledge and Information Systems > Issue 9/2021
Authors:
Atsushi Nitanda, Tomoya Murata, Taiji Suzuki
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The minibatching technique has been extensively adopted to facilitate stochastic first-order methods because of their computational efficiency in parallel computing for large-scale machine learning and data mining. Indeed, increasing the minibatch size decreases the iteration complexity (number of minibatch queries) to converge, resulting in the decrease of the running time by processing a minibatch in parallel. However, this gain is usually saturated for too large minibatch sizes and the total computational complexity (number of access to an example) is deteriorated. Hence, the determination of an appropriate minibatch size which controls the trade-off between the iteration and total computational complexities is important to maximize performance of the method with as few computational resources as possible. In this study, we define the optimal minibatch size as the minimum minibatch size with which there exists a stochastic first-order method that achieves the optimal iteration complexity and we call such a method the optimal minibatch method. Moreover, we show that Katyusha (in: Proceedings of annual ACM SIGACT symposium on theory of computing vol 49, pp 1200–1205, ACM, 2017), DASVRDA (Murata and Suzuki, in: Advances in neural information processing systems vol 30, pp 608–617, 2017), and the proposed method which is a combination of Acc-SVRG (Nitanda, in: Advances in neural information processing systems vol 27, pp 1574–1582, 2014) with APPA (Cotter et al. in: Advances in neural information processing systems vol 27, pp 3059–3067, 2014) are optimal minibatch methods. In experiments, we compare optimal minibatch methods with several competitors on \(L_1\)-and \(L_2\)-regularized logistic regression problems and observe that iteration complexities of optimal minibatch methods linearly decrease as minibatch sizes increase up to reasonable minibatch sizes and finally attain the best iteration complexities. This confirms the computational efficiency of optimal minibatch methods suggested by the theory.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 9/2021

Knowledge and Information Systems 9/2021 Go to the issue

Premium Partner

    Image Credits