Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 10/2020

08-06-2020 | Research Article-Civil Engineering

Shear Characteristics and Failure Mode of Hard Brittle Marl with Parallel Discontinuous Structural Plane

Authors: Zhiming Yin, Xinrong Liu, Zhongping Yang, Yuanwen Jiang, Yalong Zhao, Shiqi Li

Published in: Arabian Journal for Science and Engineering | Issue 10/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Engineering practice shows that the failure of rock bridges between structural planes which makes the discontinuous structural plane evolve into a continuous sliding fracture plane leads the instability of many slopes. In order to further understand the shear failure mechanism of rock mass with discontinuous structural plane, the direct shear tests under different normal pressures were carried out on the hard brittle limestone samples with different structural plane dip angles. The test results show that the fracture surface of rock bridge is mainly tensile failure, while both sides of the fracture surface are mainly shear failure. Both two flanks and the middle fracture surface show that both ends of the fracture surface are mainly shear failure, while the middle of the fracture surface is mainly tensile failure. When σ is large and α is small, the rock is mainly shear failure. When σ is large and α is large, or σ is small and α is small, the rock is mainly tension-shear mixed failure. When σ is small and α is large, the rock is mainly tensile failure. The failure mode of the sample may vary with the change of the structural plane inclination and normal stress. But overall speaking, it can be summarized as five typical failure modes that are STS–STS–STS, STS–T–STS, S–STS–S, S–S–S and T–T–T. The peak shear stress of the sample increases with the increase in normal stress, and decreases first and then increases with the increase in the dip angle of the structural plane. When α = 0°, the peak shear stress is the largest; when α = 45°, the peak shear stress is the smallest. When α is small, the shear strength of the sample is mainly affected by the inclination angle θ of the rock bridge. When α is large, the shear strength of the sample is mainly affected by the length L of the rock bridge.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hoek, E.: Strength of jointed rock masses. Geotechnique 33(3), 187–223 (1983)CrossRef Hoek, E.: Strength of jointed rock masses. Geotechnique 33(3), 187–223 (1983)CrossRef
2.
go back to reference Guo, S.F.; Qi, S.W.: Numerical study on progressive failure of hard rock samples with an unfilled undulate joint. Eng. Geol. 193, 173–182 (2015)CrossRef Guo, S.F.; Qi, S.W.: Numerical study on progressive failure of hard rock samples with an unfilled undulate joint. Eng. Geol. 193, 173–182 (2015)CrossRef
3.
go back to reference Zhou, X.P.; Zhang, J.Z.; Qian, Q.H.; et al.: Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques. J. Struct. Geol. 126, 129–145 (2019)CrossRef Zhou, X.P.; Zhang, J.Z.; Qian, Q.H.; et al.: Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques. J. Struct. Geol. 126, 129–145 (2019)CrossRef
4.
go back to reference Zhu, T.T.; Huang, D.: Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress. Int. J. Rock Mech. Min. Sci. 114, 186–194 (2019)CrossRef Zhu, T.T.; Huang, D.: Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress. Int. J. Rock Mech. Min. Sci. 114, 186–194 (2019)CrossRef
6.
go back to reference Gratchev, I.; Dong, H.K.; Chong, K.Y.: Strength of rock-like specimens with preexisting cracks of different length and width. Rock Mech. Rock Eng. 49, 4491–4496 (2016)CrossRef Gratchev, I.; Dong, H.K.; Chong, K.Y.: Strength of rock-like specimens with preexisting cracks of different length and width. Rock Mech. Rock Eng. 49, 4491–4496 (2016)CrossRef
7.
go back to reference Zhang, J.Z.; Zhou, X.P.; Zhou, L.S.; Berto, F.: Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data. Fatigue Fract. Eng. Mater. Struct. 42(8), 1787–1802 (2019)CrossRef Zhang, J.Z.; Zhou, X.P.; Zhou, L.S.; Berto, F.: Progressive failure of brittle rocks with non-isometric flaws: Insights from acousto-optic-mechanical (AOM) data. Fatigue Fract. Eng. Mater. Struct. 42(8), 1787–1802 (2019)CrossRef
8.
go back to reference Terzaghi, K.; Hon. M.A.S.C.E.; M.I.C.E: Stability of steep slopes on hard unweathered rock. Geotechnique 12, 251–270 (1962)CrossRef Terzaghi, K.; Hon. M.A.S.C.E.; M.I.C.E: Stability of steep slopes on hard unweathered rock. Geotechnique 12, 251–270 (1962)CrossRef
9.
go back to reference Eberhardt, E.; Stead, D.; Coggan, J.S.: Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 41(7), 69–87 (2004)CrossRef Eberhardt, E.; Stead, D.; Coggan, J.S.: Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 41(7), 69–87 (2004)CrossRef
10.
go back to reference Brideau, M.-A.; Yan, M.; Stead, D.: The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103(1), 30–49 (2009)CrossRef Brideau, M.-A.; Yan, M.; Stead, D.: The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103(1), 30–49 (2009)CrossRef
11.
go back to reference Huang, D.; Cen, D.F.; Ma, G.W.; et al.: Step-path failure of rock slopes with intermittent joints. Landslides 12(5), 911–926 (2015)CrossRef Huang, D.; Cen, D.F.; Ma, G.W.; et al.: Step-path failure of rock slopes with intermittent joints. Landslides 12(5), 911–926 (2015)CrossRef
12.
go back to reference Huang, R.Q.; Qi, S.W.: Engineering geology: ten years review and prospect. J. Eng. Geol. Chin. 25(2), 257–276 (2017) Huang, R.Q.; Qi, S.W.: Engineering geology: ten years review and prospect. J. Eng. Geol. Chin. 25(2), 257–276 (2017)
13.
go back to reference Zhang, K.; Chen, Y.L.; Fan, W.C.; et al.: Influence of intermittent artificial crack density on shear fracturing and fractal behavior of rock bridges: experimental and numerical studies. Rock Mech. Rock Eng. (4):1–16 (2019) Zhang, K.; Chen, Y.L.; Fan, W.C.; et al.: Influence of intermittent artificial crack density on shear fracturing and fractal behavior of rock bridges: experimental and numerical studies. Rock Mech. Rock Eng. (4):1–16 (2019)
14.
go back to reference Liu, D.Y.; Ye, X.M.; Zhu, F.: The ultimates strength evaluation of rock mass containing intermittent joints. J. Chongqing Jianzhu Univ. Chin. 19(2), 21–30 (1997) Liu, D.Y.; Ye, X.M.; Zhu, F.: The ultimates strength evaluation of rock mass containing intermittent joints. J. Chongqing Jianzhu Univ. Chin. 19(2), 21–30 (1997)
15.
go back to reference Wong, R.H.C.; Chau, K.T.: Crack coalescence in a rock-like material containing two cracks. Int. J. Rock Mech. Min. Sci. 35(2), 147–164 (1998)CrossRef Wong, R.H.C.; Chau, K.T.: Crack coalescence in a rock-like material containing two cracks. Int. J. Rock Mech. Min. Sci. 35(2), 147–164 (1998)CrossRef
16.
go back to reference Sagong, M.; Bobet, A.: Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int. J. Rock Mech. Min. Sci. 39, 229–241 (2002)CrossRef Sagong, M.; Bobet, A.: Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int. J. Rock Mech. Min. Sci. 39, 229–241 (2002)CrossRef
17.
go back to reference Yang, S.Q.; Dai, Y.H.; Han, L.J.; et al.: Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng. Fract. Mech. 76(12), 1833–1845 (2009)CrossRef Yang, S.Q.; Dai, Y.H.; Han, L.J.; et al.: Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng. Fract. Mech. 76(12), 1833–1845 (2009)CrossRef
18.
go back to reference Wong, L.N.; Einstein, H.H.: Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech. Rock Eng. 42(3), 475–511 (2009)CrossRef Wong, L.N.; Einstein, H.H.: Crack coalescence in molded gypsum and Carrara marble: part 1. Macroscopic observations and interpretation. Rock Mech. Rock Eng. 42(3), 475–511 (2009)CrossRef
19.
go back to reference Zhang, J.Z.; Zhou, X.P.; Zhu, J.Y.; et al.: Quasi-static fracturing in double-flawed specimens under uniaxial loading: the role of strain rate. Int. J. Fract. 211(2), 1–28 (2018) Zhang, J.Z.; Zhou, X.P.; Zhu, J.Y.; et al.: Quasi-static fracturing in double-flawed specimens under uniaxial loading: the role of strain rate. Int. J. Fract. 211(2), 1–28 (2018)
20.
go back to reference Lajtai, E.Z.: Shear strength of weakness planes in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 6(5), 499–515 (1969)CrossRef Lajtai, E.Z.: Shear strength of weakness planes in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 6(5), 499–515 (1969)CrossRef
21.
go back to reference Liu, Y.M.; Xia, C.C.: Advances in research of rock masses containing discontinuous joints in direct shear test. Rock Soil Mech. Chin. 28(08), 198–203 (2007)MathSciNet Liu, Y.M.; Xia, C.C.: Advances in research of rock masses containing discontinuous joints in direct shear test. Rock Soil Mech. Chin. 28(08), 198–203 (2007)MathSciNet
22.
go back to reference Zhou, Q.L.; Liu, G.F.: Compression shear fracture of brittle materials. J. Hydraul. Eng. Chin. 7, 63–67 (1982) Zhou, Q.L.; Liu, G.F.: Compression shear fracture of brittle materials. J. Hydraul. Eng. Chin. 7, 63–67 (1982)
23.
go back to reference Bai, S.W.; Ren, W.Z.; Feng, D.X.; et al.: Research on the strength behavior of rock containing coplanar close intermittent joints by direct shear test. Rock Soil Mech. Chin. 20(2), 10–16 (1999) Bai, S.W.; Ren, W.Z.; Feng, D.X.; et al.: Research on the strength behavior of rock containing coplanar close intermittent joints by direct shear test. Rock Soil Mech. Chin. 20(2), 10–16 (1999)
24.
go back to reference Liu, Y.M.: Study on Failure Models and Strength of Rockmass Containing Discontinuous Joints in Direct Shear. Tongji University, Shanghai (2007) Liu, Y.M.: Study on Failure Models and Strength of Rockmass Containing Discontinuous Joints in Direct Shear. Tongji University, Shanghai (2007)
25.
go back to reference Savilabti, T.; Nordlund, E.; Tephansson, O.: Shear box testing and modeling of joint bridge [A]. In: Rock joints: Proceedings of the International Symposium on Rock Joints. A.A. Balkema: Rotterdam (1990) Savilabti, T.; Nordlund, E.; Tephansson, O.: Shear box testing and modeling of joint bridge [A]. In: Rock joints: Proceedings of the International Symposium on Rock Joints. A.A. Balkema: Rotterdam (1990)
26.
go back to reference Ghazvinian, A.; Sarfarazi, V.; Schubert, W.; et al.: A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mech. Rock Eng. 45(5), 677–693 (2012) Ghazvinian, A.; Sarfarazi, V.; Schubert, W.; et al.: A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mech. Rock Eng. 45(5), 677–693 (2012)
27.
go back to reference Sarfarazi, V.; Ghazvinian, A.; Schubert, W.; et al.: Numerical simulation of the process of fracture of echelon rock joints. Rock Mech. Rock Eng. 47(4), 1355–1371 (2014)CrossRef Sarfarazi, V.; Ghazvinian, A.; Schubert, W.; et al.: Numerical simulation of the process of fracture of echelon rock joints. Rock Mech. Rock Eng. 47(4), 1355–1371 (2014)CrossRef
28.
go back to reference Gehle, C.; Kutter, H.K.: Breakage and shear behavior of intermittent rockjoints. Int. J. Rock Mech. Min. Sci. 40, 687–700 (2003)CrossRef Gehle, C.; Kutter, H.K.: Breakage and shear behavior of intermittent rockjoints. Int. J. Rock Mech. Min. Sci. 40, 687–700 (2003)CrossRef
29.
go back to reference National Standards Compilation Group of People's Republic of China. Standard for tests method of engineering rock masses (GB/T 50266-2013). China Planning Press, Beijing (in Chinese) (2013) National Standards Compilation Group of People's Republic of China. Standard for tests method of engineering rock masses (GB/T 50266-2013). China Planning Press, Beijing (in Chinese) (2013)
Metadata
Title
Shear Characteristics and Failure Mode of Hard Brittle Marl with Parallel Discontinuous Structural Plane
Authors
Zhiming Yin
Xinrong Liu
Zhongping Yang
Yuanwen Jiang
Yalong Zhao
Shiqi Li
Publication date
08-06-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 10/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04674-5

Other articles of this Issue 10/2020

Arabian Journal for Science and Engineering 10/2020 Go to the issue

Premium Partners