Skip to main content
Top

2013 | OriginalPaper | Chapter

2. Shell Element Formulations for General Nonlinear Analysis. Modeling Techniques

Authors : Eduardo N. Dvorkin, Rita G. Toscano

Published in: Finite Element Analysis of the Collapse and Post-Collapse Behavior of Steel Pipes: Applications to the Oil Industry

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In 1970, Ahmad et al. [1] presented a shell element formulation that after many years still constitutes the basis for modern finite element analysis of shell structures. The original formulation was afterwards extended to material and geometric nonlinear analysis under the constraint of the infinitesimal strains assumption [2–4].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
We use Einstein’s notation: \( a_{k} b_{k} \equiv \sum\nolimits_{k} {a_{k} } b_{k} \), that is to say repeated indices indicate a summation.
 
2
Some authors use the notation \( {}^{o}\underline{g}^{i} \otimes {}^{o}\underline{g}^{j} \).
 
3
Please notice that shell elements are not compatible with Bernoulli beam elements.
 
Literature
1.
go back to reference Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2:419–451CrossRef Ahmad S, Irons B, Zienkiewicz O (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Methods Eng 2:419–451CrossRef
2.
go back to reference Ramm E (1977) A plate/shell element for large deflections and rotations. In: Bathe et al (ed) Formulations and computational algorithms in finite element analysis. MIT Press, Cambridge Ramm E (1977) A plate/shell element for large deflections and rotations. In: Bathe et al (ed) Formulations and computational algorithms in finite element analysis. MIT Press, Cambridge
3.
go back to reference Kråkeland B (1978) Nonlinear analysis of shells using degenerate isoparametric elements. In: Bergan et al (ed), Finite elements in nonlinear mechanics. Tapir Publishers, Norwegian Institute of Technology, Trondheim Kråkeland B (1978) Nonlinear analysis of shells using degenerate isoparametric elements. In: Bergan et al (ed), Finite elements in nonlinear mechanics. Tapir Publishers, Norwegian Institute of Technology, Trondheim
4.
go back to reference Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11:23–48MATHCrossRef Bathe K-J, Bolourchi S (1980) A geometric and material nonlinear plate and shell element. Comput Struct 11:23–48MATHCrossRef
5.
go back to reference Bathe K-J (1996) Finite element procedures. Prentice Hall, Saddle River Bathe K-J (1996) Finite element procedures. Prentice Hall, Saddle River
6.
go back to reference Zienkiewicz O, Taylor R (2000) The finite element method. Butterworth-Heinemann, OxfordMATH Zienkiewicz O, Taylor R (2000) The finite element method. Butterworth-Heinemann, OxfordMATH
7.
go back to reference Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRef Dvorkin EN, Bathe K-J (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRef
8.
go back to reference Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383MATHCrossRef Bathe K-J, Dvorkin EN (1985) A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation. Int J Numer Methods Eng 21:367–383MATHCrossRef
9.
go back to reference Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722MATHCrossRef Bathe K-J, Dvorkin EN (1986) A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int J Numer Methods Eng 22:697–722MATHCrossRef
10.
go back to reference Rodal J, Witmer E (1979) Finite-strain large-deflection elastic-viscoplastic finite-element transient analysis of structure. NASA CR 159874 Rodal J, Witmer E (1979) Finite-strain large-deflection elastic-viscoplastic finite-element transient analysis of structure. NASA CR 159874
11.
go back to reference Hughes T, Carnoy E (1983) Nonlinear finite element shell formulation accounting for large membrane strains. Comput Methods Appl Mech Eng 39:69–82MATHCrossRef Hughes T, Carnoy E (1983) Nonlinear finite element shell formulation accounting for large membrane strains. Comput Methods Appl Mech Eng 39:69–82MATHCrossRef
12.
go back to reference Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304MathSciNetMATHCrossRef Simo J, Fox D (1989) On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parametrization. Comput Methods Appl Mech Eng 72:267–304MathSciNetMATHCrossRef
13.
go back to reference Simo J, Fox D, Rifai M (1989) On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comput Methods Appl Mech Eng 72:53–92MathSciNetCrossRef Simo J, Fox D, Rifai M (1989) On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects. Comput Methods Appl Mech Eng 72:53–92MathSciNetCrossRef
14.
go back to reference Simo J, Fox D, Rifai M (1990) On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput Methods Appl Mechs Eng 79:21–70MathSciNetMATHCrossRef Simo J, Fox D, Rifai M (1990) On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory. Comput Methods Appl Mechs Eng 79:21–70MathSciNetMATHCrossRef
15.
go back to reference Simo J, Fox D, Rifai M (1992) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81:91–126MathSciNetCrossRef Simo J, Fox D, Rifai M (1992) On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comput Methods Appl Mech Eng 81:91–126MathSciNetCrossRef
16.
go back to reference Simo J, Kennedy J (1992) On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity formulation and integration algorithms. Comput Methods Appl Mech Eng 96:133–171MathSciNetMATHCrossRef Simo J, Kennedy J (1992) On a stress resultant geometrically exact shell model. Part V: Nonlinear plasticity formulation and integration algorithms. Comput Methods Appl Mech Eng 96:133–171MathSciNetMATHCrossRef
17.
go back to reference Büchter M, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37:2551–2568MATHCrossRef Büchter M, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37:2551–2568MATHCrossRef
18.
go back to reference Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449MATHCrossRef Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:4427–4449MATHCrossRef
19.
go back to reference Dvorkin EN, Pantuso D, Repetto E (1995) A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput Methods Appl Mech Eng 125:17–40CrossRef Dvorkin EN, Pantuso D, Repetto E (1995) A formulation of the MITC4 shell element for finite strain elasto-plastic analysis. Comput Methods Appl Mech Eng 125:17–40CrossRef
20.
21.
go back to reference Toscano RG, Dvorkin EN (2007) A shell element for finite strain analyses. Hyperelastic material models. Eng Comput 24:514–535MATHCrossRef Toscano RG, Dvorkin EN (2007) A shell element for finite strain analyses. Hyperelastic material models. Eng Comput 24:514–535MATHCrossRef
22.
go back to reference Toscano RG, Dvorkin EN (2008) A new shell element for elasto-plastic finite strain analyzes. Application to the collapse and post-collapse analysis of marine pipelines. In: Abel J, Cooke J (eds), Proceedings 6th international conference on computation of shell & spatial structures, Spanning Nano to Mega. Ithaca Toscano RG, Dvorkin EN (2008) A new shell element for elasto-plastic finite strain analyzes. Application to the collapse and post-collapse analysis of marine pipelines. In: Abel J, Cooke J (eds), Proceedings 6th international conference on computation of shell & spatial structures, Spanning Nano to Mega. Ithaca
23.
go back to reference Dvorkin EN, Oñate E, Oliver X (1988) On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Methods Eng 26:1597–1613MATHCrossRef Dvorkin EN, Oñate E, Oliver X (1988) On a nonlinear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. Int J Numer Methods Eng 26:1597–1613MATHCrossRef
24.
go back to reference Dvorkin EN, Goldschmit MB (2005) Nonlinear continua. Springer, Berlin Dvorkin EN, Goldschmit MB (2005) Nonlinear continua. Springer, Berlin
25.
go back to reference Dvorkin EN (1992) On nonlinear analysis of shells using finite elements based on mixed interpolation of tensorial components. In: Rammerstorfer F (ed) Nonlinear analysis of shells by finite elements. Springer, New York Dvorkin EN (1992) On nonlinear analysis of shells using finite elements based on mixed interpolation of tensorial components. In: Rammerstorfer F (ed) Nonlinear analysis of shells by finite elements. Springer, New York
26.
go back to reference Gebhardt H, Schweizerhof K (1993) Interpolation of curved shell geometries by low order finite elements—errors and modifications. Int J Numer Methods Eng 36:287–302MATHCrossRef Gebhardt H, Schweizerhof K (1993) Interpolation of curved shell geometries by low order finite elements—errors and modifications. Int J Numer Methods Eng 36:287–302MATHCrossRef
27.
go back to reference Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkMATH Simo J, Hughes T (1998) Computational inelasticity. Springer, New YorkMATH
Metadata
Title
Shell Element Formulations for General Nonlinear Analysis. Modeling Techniques
Authors
Eduardo N. Dvorkin
Rita G. Toscano
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-37361-9_2

Premium Partners