Skip to main content
Top
Published in: Theoretical and Computational Fluid Dynamics 6/2019

21-09-2019 | Original Article

Shock wave structure in a non-ideal gas under temperature and density-dependent viscosity and heat conduction

Authors: Manoj Singh, Arvind Patel

Published in: Theoretical and Computational Fluid Dynamics | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The structure of a shock wave is investigated using the continuum hypothesis for steady one-dimensional flow of a viscous non-ideal gas under heat conduction. The coefficients of viscosity and heat conductivity are assumed to be directly proportional to a power of the temperature and density of the gas. The simplified van der Waals equation of state for the non-ideal gas has been assumed in this work. Qualitative analysis of shock wave structure has been done in terms of singularity analysis, isoclines, and integral curves. The exact and numerical solutions of shock structure equations are obtained under the quantitative analysis. The validation of solution is established by comparing the results in the literature (Iannelli in Int J Numer Methods Fluids 72(2):157–176, 2013). The variation of normalized gas velocity, viscous stress, heat flux, and shock thickness have been investigated across shock transition zone with the non-idealness of the gas, temperature, and density exponents in the viscosity and heat conductivity of the gas and initial Mach number. It is found that gas velocity decreases significantly with the increase in non-idealness parameter, temperature, and density exponent in the viscosity of the gas. Shock wave thickness decreases with the increase in the non-idealness of the gas under constant viscosity and heat conductivity but increase under variable gas properties. The thickness of a shock wave decreases with the increase in the temperature exponent and increases with the increase in the density exponent.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbances. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870)CrossRef Rankine, W.J.M.: On the thermodynamic theory of waves of finite longitudinal disturbances. Philos. Trans. R. Soc. Lond. 160, 277–288 (1870)CrossRef
2.
go back to reference Rayleigh, L.: Arial plane waves of finite amplitude. Proc. R. Soc. Lond. A 84, 247–284 (1910)CrossRef Rayleigh, L.: Arial plane waves of finite amplitude. Proc. R. Soc. Lond. A 84, 247–284 (1910)CrossRef
3.
go back to reference Taylor, G.I.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. A 84, 371–377 (1910)CrossRef Taylor, G.I.: The conditions necessary for discontinuous motion in gases. Proc. R. Soc. Lond. A 84, 371–377 (1910)CrossRef
4.
go back to reference Becker, R.: Impact waves and detonation. Z. Phys. 8, 321 (1922) transtation, N.A.C.A.- T.M. No. 505 (1929) Becker, R.: Impact waves and detonation. Z. Phys. 8, 321 (1922) transtation, N.A.C.A.- T.M. No. 505 (1929)
5.
go back to reference Thomas, L.H.: Note on Becker’s theory of the shock front. J. Chem. Phys. 12, 449–453 (1944)CrossRef Thomas, L.H.: Note on Becker’s theory of the shock front. J. Chem. Phys. 12, 449–453 (1944)CrossRef
6.
go back to reference Reissner, H.J., Meyerhoff., L.: A contribution to the exact solutions of the problem of a one-dimensional shock wave in a viscous, heat conduction fluid. PIBAL Report, vol. 138 (1948) Reissner, H.J., Meyerhoff., L.: A contribution to the exact solutions of the problem of a one-dimensional shock wave in a viscous, heat conduction fluid. PIBAL Report, vol. 138 (1948)
7.
go back to reference Meyerhoff, L., Reissner, H.J.: The standing, one-dimensional shock wave under the influence of temperature-dependent viscosity, heat conduction and specific heat. PIBAL Report, vol. 150 (1949) Meyerhoff, L., Reissner, H.J.: The standing, one-dimensional shock wave under the influence of temperature-dependent viscosity, heat conduction and specific heat. PIBAL Report, vol. 150 (1949)
8.
9.
go back to reference Meyerhoff, L.: An extension of the theory of the one-dimensional shock waves structure. J. Aeronaut. Sci. 17, 775–786 (1950)MathSciNetCrossRef Meyerhoff, L.: An extension of the theory of the one-dimensional shock waves structure. J. Aeronaut. Sci. 17, 775–786 (1950)MathSciNetCrossRef
11.
go back to reference Gilbarg, D., Paolucci, D.: structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2(4), 617–642 (1953)MathSciNetMATH Gilbarg, D., Paolucci, D.: structure of shock waves in the continuum theory of fluids. J. Ration. Mech. Anal. 2(4), 617–642 (1953)MathSciNetMATH
12.
go back to reference Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambringe University Press, Cambringe (1970)MATH Chapman, S., Cowling, T.: The Mathematical Theory of Non-uniform Gases. Cambringe University Press, Cambringe (1970)MATH
13.
go back to reference Cercignani, C.: Theory and Application of the Boltzmann Equation. Scottish Academic, Edinburgh (1975)MATH Cercignani, C.: Theory and Application of the Boltzmann Equation. Scottish Academic, Edinburgh (1975)MATH
14.
go back to reference Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972) Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North-Holland, Amsterdam (1972)
15.
go back to reference Bobylev, A.V.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29 (1982) Bobylev, A.V.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Sov. Phys. Dokl. 27, 29 (1982)
18.
go back to reference Talbot, L.,Sherman, F.S.: Experiment versus kinetic theory for rarefied gases. In rarefied gas dynamics: Proc. 1st Intl Symp (ed. F.M. Devienne). Pergamon, New York Talbot, L.,Sherman, F.S.: Experiment versus kinetic theory for rarefied gases. In rarefied gas dynamics: Proc. 1st Intl Symp (ed. F.M. Devienne). Pergamon, New York
19.
go back to reference Bird, G. A.: Proceedings of the 7th International Symposium on Rarefied Gas Dynamics, vol. 2, p. 693 (1971) Bird, G. A.: Proceedings of the 7th International Symposium on Rarefied Gas Dynamics, vol. 2, p. 693 (1971)
21.
go back to reference Wang Chang, C.S.: On the Theory of the Thickness of Weak Shock Waves, Department of Engineering Research. University of Michigan, APL/JHU CM-503, UMH-3-F. August (1948) Wang Chang, C.S.: On the Theory of the Thickness of Weak Shock Waves, Department of Engineering Research. University of Michigan, APL/JHU CM-503, UMH-3-F. August (1948)
22.
go back to reference Zoller, K.: Zur struktur des verdiehrungsstobes. Zeitschrift fur Physik 130, 1 (1951)CrossRef Zoller, K.: Zur struktur des verdiehrungsstobes. Zeitschrift fur Physik 130, 1 (1951)CrossRef
25.
go back to reference Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluids Mech. 74(3), 497–613 (1976)CrossRef Alsmeyer, H.: Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluids Mech. 74(3), 497–613 (1976)CrossRef
26.
go back to reference Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E Part A 52, R5760 (1995)CrossRef Weiss, W.: Continuous shock structure in extended thermodynamics. Phys. Rev. E Part A 52, R5760 (1995)CrossRef
28.
go back to reference Muller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn, pp. 277–308. Springer, New York (1998)CrossRef Muller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn, pp. 277–308. Springer, New York (1998)CrossRef
29.
go back to reference Morduchow, M., Libby, P.A.: On a complete solution of the one-dimensional flow equations of viscous, heat conducting, compressible gas. J. Aeronaut. Sci. 16, 674–684 (1949)MathSciNetCrossRef Morduchow, M., Libby, P.A.: On a complete solution of the one-dimensional flow equations of viscous, heat conducting, compressible gas. J. Aeronaut. Sci. 16, 674–684 (1949)MathSciNetCrossRef
30.
go back to reference Ludford, G.S.S.: The classification of one-dimensional flows and the general problem of a compressible, viscous, heat-conducting fluid. J. Aeronaut. Sci. 18(12), 830–834 (1951)MathSciNetCrossRef Ludford, G.S.S.: The classification of one-dimensional flows and the general problem of a compressible, viscous, heat-conducting fluid. J. Aeronaut. Sci. 18(12), 830–834 (1951)MathSciNetCrossRef
31.
go back to reference Griffith, W.C., Bleakney, W.: Shock waves in gases. A. J. Phys. 22(9), 597–612 (1954)CrossRef Griffith, W.C., Bleakney, W.: Shock waves in gases. A. J. Phys. 22(9), 597–612 (1954)CrossRef
32.
go back to reference Thompson, P.A., Lambrakis, K.C.: Negative shock waves. J. Fluid Mech. 60, 187–208 (1973)CrossRef Thompson, P.A., Lambrakis, K.C.: Negative shock waves. J. Fluid Mech. 60, 187–208 (1973)CrossRef
33.
go back to reference Khidr, M.A., Mahmoud, M.A.A.: The shock wave structure for arbitrary Prandtl number and high Mach numbers. Astrophys. Space Sci. 113, 289–301 (1985)CrossRef Khidr, M.A., Mahmoud, M.A.A.: The shock wave structure for arbitrary Prandtl number and high Mach numbers. Astrophys. Space Sci. 113, 289–301 (1985)CrossRef
34.
go back to reference Cramer, M.S., Crickenberger, A.B.: The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325–355 (1991)CrossRef Cramer, M.S., Crickenberger, A.B.: The dissipative structure of shock waves in dense gases. J. Fluid Mech. 223, 325–355 (1991)CrossRef
35.
go back to reference Iannelli, J.: An implicit Galerkin finite element Runge–Kutta algorithm for shock-structure investigations. J. Compt. Phys. 230, 260–286 (2011)MathSciNetCrossRef Iannelli, J.: An implicit Galerkin finite element Runge–Kutta algorithm for shock-structure investigations. J. Compt. Phys. 230, 260–286 (2011)MathSciNetCrossRef
36.
go back to reference Johnson, B.M.: Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726(R4), 1–12 (2013)MathSciNetMATH Johnson, B.M.: Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726(R4), 1–12 (2013)MathSciNetMATH
38.
go back to reference Iannelli, J.: An exact non-linear Navier–Stokes compressible-flow solution for CFD code verification. Int. J. Numer. Meth. Fluids 72(2), 157–176 (2013)MathSciNetCrossRef Iannelli, J.: An exact non-linear Navier–Stokes compressible-flow solution for CFD code verification. Int. J. Numer. Meth. Fluids 72(2), 157–176 (2013)MathSciNetCrossRef
39.
go back to reference Myong, R.S.: Technical note for analytical solutions of shock structure thickness and asymmetry in Navier–Stokes/Fourier framework. AIAA J. 52(5), 1075–1080 (2014)CrossRef Myong, R.S.: Technical note for analytical solutions of shock structure thickness and asymmetry in Navier–Stokes/Fourier framework. AIAA J. 52(5), 1075–1080 (2014)CrossRef
40.
go back to reference Anand, A.K., Yadav, H.C.: On the structure of MHD shock waves in a viscous non-ideal gas. Theor. Comput. Fluid Dyn. 28, 369–376 (2014)CrossRef Anand, A.K., Yadav, H.C.: On the structure of MHD shock waves in a viscous non-ideal gas. Theor. Comput. Fluid Dyn. 28, 369–376 (2014)CrossRef
41.
go back to reference Anand, A.K., Yadav, H.C.: The effect of viscosity on the structure of shock waves in a non-ideal gas. Acta. Phys. Pol. A 129, 28–34 (2016)CrossRef Anand, A.K., Yadav, H.C.: The effect of viscosity on the structure of shock waves in a non-ideal gas. Acta. Phys. Pol. A 129, 28–34 (2016)CrossRef
42.
go back to reference Patel, A., Manoj, S.: Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity. Shock Waves 29, 427–439 (2019)CrossRef Patel, A., Manoj, S.: Exact solution of shock wave structure in a non-ideal gas under constant and variable coefficient of viscosity and heat conductivity. Shock Waves 29, 427–439 (2019)CrossRef
43.
go back to reference Roberts, P.H., Wu, C.C.: Structure and stability of a spherical implosion. Phys. Lett. 213, 59–64 (1996)CrossRef Roberts, P.H., Wu, C.C.: Structure and stability of a spherical implosion. Phys. Lett. 213, 59–64 (1996)CrossRef
44.
go back to reference Roberts, P.H., Wu, C.C.: The shock wave theory of sonoluminescene. In: Srivastava, R.C., Leutloff, D., Takayama, K., Groning, H. (eds.) Shock Focussing Effect in Medical Science and Sonoluminescene. Springer, Berlin (2003) Roberts, P.H., Wu, C.C.: The shock wave theory of sonoluminescene. In: Srivastava, R.C., Leutloff, D., Takayama, K., Groning, H. (eds.) Shock Focussing Effect in Medical Science and Sonoluminescene. Springer, Berlin (2003)
45.
go back to reference Vishwakarma, J.P., Chaube, V., Patel, A.: Self-similar solution of a shock propagation in a non-ideal gas. Int. J. Appl. Mech. Eng 12, 813–829 (2007) Vishwakarma, J.P., Chaube, V., Patel, A.: Self-similar solution of a shock propagation in a non-ideal gas. Int. J. Appl. Mech. Eng 12, 813–829 (2007)
48.
go back to reference Ghoniem, A.F., Kamel, M.M., Berger, S.A., Oppenheim, A.K.: Effects of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech 117, 473–491 (1982)CrossRef Ghoniem, A.F., Kamel, M.M., Berger, S.A., Oppenheim, A.K.: Effects of internal heat transfer on the structure of self-similar blast waves. J. Fluid Mech 117, 473–491 (1982)CrossRef
49.
go back to reference Landau, L.D., Lifshitz, E.M.: Statistical Physics, Course of Theoretical Physics, vol. 5. Pergamon, Oxford (1958) Landau, L.D., Lifshitz, E.M.: Statistical Physics, Course of Theoretical Physics, vol. 5. Pergamon, Oxford (1958)
50.
go back to reference Anisimov, S.I., Spiner, O.M.: Motion of an almost ideal gas in the presence of a strong point explosion. J. Appl. Math. Mech. 36, 883–887 (1972)CrossRef Anisimov, S.I., Spiner, O.M.: Motion of an almost ideal gas in the presence of a strong point explosion. J. Appl. Math. Mech. 36, 883–887 (1972)CrossRef
Metadata
Title
Shock wave structure in a non-ideal gas under temperature and density-dependent viscosity and heat conduction
Authors
Manoj Singh
Arvind Patel
Publication date
21-09-2019
Publisher
Springer Berlin Heidelberg
Published in
Theoretical and Computational Fluid Dynamics / Issue 6/2019
Print ISSN: 0935-4964
Electronic ISSN: 1432-2250
DOI
https://doi.org/10.1007/s00162-019-00505-y

Premium Partners