Skip to main content
Top
Published in: Journal of Materials Science 12/2021

03-01-2021 | Metals & corrosion

Si diffusion across the liquid/solid interface of capillary driven (Al–Si)-KxAlyFz micro-layers

Authors: Yangyang Wu, Cheng-Nien Yu, Dusan P. Sekulic

Published in: Journal of Materials Science | Issue 12/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diffusion is an important phenomenon involved in thermal processing, e.g., a Si diffusion in an (Al–Si)-KxAlyFz clad alloy during aluminum (Al–Mn) brazing, to be considered in this study. Specifically, the Si migration affects the amount of liquid metal available to form a mating surfaces’ bond and further influences the solid substrate dissolution at the liquid–solid interface between (Al–Si)-KxAlyFz and Al–Mn. These events greatly impact the performance (e.g., joint formation) of the materials involved. To quantify theoretically the available liquid metal contributing to the subsequent joint formation, the diffusion process is in the first approximation divided into two evolving time segments, both before the onset of resolidification: 1. the solid-state Si diffusion prior the clad melting and 2. the liquid state Si diffusion after the clad melting. Of the two segments, the later has not been addressed in the available literature. The analysis of the sequence of the solid and liquid diffusion segments has been facilitated by performing a series of experimental benchmark studies. The Si solid diffusion across the clad–core interface has been monitored at 150 °C, 250 °C, 350 °C, 450 °C and 550 °C peak temperatures. Each dwell at the peak lasted for 10 min. For the study of the impact of liquid diffusion on the solid substrate, the experiments have been performed at the peak temperature of 600 °C with different heating rates, ranging from 1 to 60 °C/min. The joint formation process evolution has been modeled, and an excellent agreement with empirical data has been established.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Sekulic DP (2018) Brazing of Aluminum Alloys. In: Anderson K, Weritz J, Kaufman JG (eds) ASM Handbook. ASM International, Novelty, pp 763–782 Sekulic DP (2018) Brazing of Aluminum Alloys. In: Anderson K, Weritz J, Kaufman JG (eds) ASM Handbook. ASM International, Novelty, pp 763–782
2.
go back to reference Sekulic DP (2013) Advances in brazing: science, technology and applications. Woodhead publishing, CambridgeCrossRef Sekulic DP (2013) Advances in brazing: science, technology and applications. Woodhead publishing, CambridgeCrossRef
3.
go back to reference American Welding Society (AWS) C3 Committee on brazing and soldering (2007) Brazing Handbook, 5th ed. American Welding Society, Miami American Welding Society (AWS) C3 Committee on brazing and soldering (2007) Brazing Handbook, 5th ed. American Welding Society, Miami
4.
go back to reference Hawksworth DK (2013) Fluxless brazing of aluminum. In: Sekulic DP (ed) Advances in brazing. Woodhead publishing, Cambridge, pp 566–584CrossRef Hawksworth DK (2013) Fluxless brazing of aluminum. In: Sekulic DP (ed) Advances in brazing. Woodhead publishing, Cambridge, pp 566–584CrossRef
5.
go back to reference Fujikawa S, Hirano K, Fukushima Y (1978) Diffusion of silicon in aluminum. Metall Trans A 9:1811–1815CrossRef Fujikawa S, Hirano K, Fukushima Y (1978) Diffusion of silicon in aluminum. Metall Trans A 9:1811–1815CrossRef
6.
go back to reference Kirkendall EO (1942) Diffusion of zinc in alpha brass. Trans Am Inst Min Metall Eng 147:104–110. Kirkendall EO (1942) Diffusion of zinc in alpha brass. Trans Am Inst Min Metall Eng 147:104–110.
7.
go back to reference Terrill JR (1966) Diffusion of silicon in aluminum brazing sheet. Weld J 45:S202-209 Terrill JR (1966) Diffusion of silicon in aluminum brazing sheet. Weld J 45:S202-209
11.
go back to reference Garg N, Castleman LS, D’Antonio C (1984) Diffusion of silicon in aluminum-rich alloy thin films. Thin Solid Films 112:317–328CrossRef Garg N, Castleman LS, D’Antonio C (1984) Diffusion of silicon in aluminum-rich alloy thin films. Thin Solid Films 112:317–328CrossRef
13.
go back to reference Freche HR (1936) Diffusion of Magnesium and Silicon into Aluminum. Trans AIME 122:324 Freche HR (1936) Diffusion of Magnesium and Silicon into Aluminum. Trans AIME 122:324
14.
go back to reference Beerwald A (1939) Diffusion of various metals in aluminum. Z Elektrochem Angew Phys Chem 45:789–795 Beerwald A (1939) Diffusion of various metals in aluminum. Z Elektrochem Angew Phys Chem 45:789–795
15.
go back to reference Mehl RF, Rhines FN, Von Den Steinen KA (1941) Diffusion in alpha solid solutions of aluminium. Met Alloy 13:41–44 Mehl RF, Rhines FN, Von Den Steinen KA (1941) Diffusion in alpha solid solutions of aluminium. Met Alloy 13:41–44
16.
go back to reference Buckle H (1943) The diffusion of Cu, Mg, Mn and Si into Al. Z Elektrochem Angew Phys Chem 49:238–242 Buckle H (1943) The diffusion of Cu, Mg, Mn and Si into Al. Z Elektrochem Angew Phys Chem 49:238–242
17.
go back to reference Roth W (1960) Ueber die Diffusion von Metallen in Aluminium. Met und Tech 14:979–983 Roth W (1960) Ueber die Diffusion von Metallen in Aluminium. Met und Tech 14:979–983
18.
go back to reference Fricke WG Jr (1965) Graphical computation of diffusion from saturated solid solutions. ASM Trans 58:421–424 Fricke WG Jr (1965) Graphical computation of diffusion from saturated solid solutions. ASM Trans 58:421–424
19.
go back to reference Fricke WG Jr (1972) Correlation between frequency factor and activation energy for diffusion in aluminum. Scr Metall 6:1139–1144CrossRef Fricke WG Jr (1972) Correlation between frequency factor and activation energy for diffusion in aluminum. Scr Metall 6:1139–1144CrossRef
20.
go back to reference Bergner D, Cyrener E (1973) Diffusion of foreign elements in aluminum solid solutions. Pt. 3. Investigations into the diffusion of silicon in aluminum using the microprobe. Neue Hutte 18:356–361 Bergner D, Cyrener E (1973) Diffusion of foreign elements in aluminum solid solutions. Pt. 3. Investigations into the diffusion of silicon in aluminum using the microprobe. Neue Hutte 18:356–361
23.
go back to reference Senaneuch J, Nylén M (2002) Diffusion modelling in brazed aluminium alloy components. In: Materials Science Forum. Trans Tech Publ, pp 1697–1702 Senaneuch J, Nylén M (2002) Diffusion modelling in brazed aluminium alloy components. In: Materials Science Forum. Trans Tech Publ, pp 1697–1702
25.
go back to reference Gale WF, Totemeir TC (2004) Smithells Metals Reference Book, 8th edn. Butterworth-Heinemann, Oxford Gale WF, Totemeir TC (2004) Smithells Metals Reference Book, 8th edn. Butterworth-Heinemann, Oxford
28.
go back to reference Lozovskiy VN, Politova NF, Shutova YV (1968) Temperature dependence of the diffusion coefficient of silicon in molten aluminum. Phys Met Metallogr 26:189–190 Lozovskiy VN, Politova NF, Shutova YV (1968) Temperature dependence of the diffusion coefficient of silicon in molten aluminum. Phys Met Metallogr 26:189–190
29.
go back to reference Ershov GS, Kasatkin AA, Golubev AA (1979) Dissolution and diffusion of alloying elements in liquid aluminum. Izveestiya Akad Nauk SSSR, Met 2:77–79 Ershov GS, Kasatkin AA, Golubev AA (1979) Dissolution and diffusion of alloying elements in liquid aluminum. Izveestiya Akad Nauk SSSR, Met 2:77–79
34.
go back to reference Craighead CM, Cawthorne EW, Jaffee RI (1955) Solution rate of solid aluminum in molten Al–Si alloy. JOM 7:81–87CrossRef Craighead CM, Cawthorne EW, Jaffee RI (1955) Solution rate of solid aluminum in molten Al–Si alloy. JOM 7:81–87CrossRef
35.
go back to reference Kosaka M, Machida M, Hirai Y (1969) On the dissolution process of solid aluminum in molten aluminium–silicon alloy. J Japan Inst Met 33:465–470CrossRef Kosaka M, Machida M, Hirai Y (1969) On the dissolution process of solid aluminum in molten aluminium–silicon alloy. J Japan Inst Met 33:465–470CrossRef
38.
go back to reference Kawase H, Takemoto T, Asano M et al (1989) Study of a method for evaluating the brazeability of aluminum sheet. Weld J 68:396s–403s Kawase H, Takemoto T, Asano M et al (1989) Study of a method for evaluating the brazeability of aluminum sheet. Weld J 68:396s–403s
39.
go back to reference Sekulic DP, Gao F, Zhao H et al (2004) Prediction of the fillet mass and topology of aluminum brazed joints. Weld J 83:102s–110s. Sekulic DP, Gao F, Zhao H et al (2004) Prediction of the fillet mass and topology of aluminum brazed joints. Weld J 83:102s–110s.
43.
go back to reference Zellmer BP, Nigro N, Sekulic DP (2001) Numerical modelling and experimental verification of the formation of 2D and 3D brazed joints. Model Simul Mater Sci Eng 9:339–355CrossRef Zellmer BP, Nigro N, Sekulic DP (2001) Numerical modelling and experimental verification of the formation of 2D and 3D brazed joints. Model Simul Mater Sci Eng 9:339–355CrossRef
44.
go back to reference Ogilvy AJW, Hawksworth DK, Abom E (2014) U.S. Patent No. 8871356. 2–7 Ogilvy AJW, Hawksworth DK, Abom E (2014) U.S. Patent No. 8871356. 2–7
45.
go back to reference Hawksworth DK, Westergård RGJ, Ogilvy AJW (2012) Trillium technology-Aluminium brazing with a composite liner. In: 7th International Congress Aluminium Brazing. DVS, pp 1–5 Hawksworth DK, Westergård RGJ, Ogilvy AJW (2012) Trillium technology-Aluminium brazing with a composite liner. In: 7th International Congress Aluminium Brazing. DVS, pp 1–5
46.
go back to reference Hawksworth DK, Sekulic DP, Yu C-N et al (2015) A mechanistic study of aluminium controlled atmosphere brazing processes. 12th Vehicle Thermal Management Systems Conference and Exhibition, May. Nottingham, U.K, pp 10–13 Hawksworth DK, Sekulic DP, Yu C-N et al (2015) A mechanistic study of aluminium controlled atmosphere brazing processes. 12th Vehicle Thermal Management Systems Conference and Exhibition, May. Nottingham, U.K, pp 10–13
48.
go back to reference Wu Y, Fu H, Hawksworth DK, et al (2018) Diffusion fields in TRILLIUMTM brazing sheet under different heating rates. In: Proceedings of 7th International brazing and soldering conference (IBSC). AWS, New Orleans, LA, pp 41–49 Wu Y, Fu H, Hawksworth DK, et al (2018) Diffusion fields in TRILLIUMTM brazing sheet under different heating rates. In: Proceedings of 7th International brazing and soldering conference (IBSC). AWS, New Orleans, LA, pp 41–49
50.
go back to reference Lundy TS, Padgett RA (1968) The near-surface effect for diffusion in silver. Trans Met Soc AIME 242:1897–1900 Lundy TS, Padgett RA (1968) The near-surface effect for diffusion in silver. Trans Met Soc AIME 242:1897–1900
51.
go back to reference Matano C (1933) On the relation between the diffusion-coefficients and concentrations of solid metals. Japanese J Phys 8:109–113 Matano C (1933) On the relation between the diffusion-coefficients and concentrations of solid metals. Japanese J Phys 8:109–113
52.
go back to reference Bishop M, Fletcher KE (1972) Diffusion in aluminium Int Metall Rev 17:203–225CrossRef Bishop M, Fletcher KE (1972) Diffusion in aluminium Int Metall Rev 17:203–225CrossRef
53.
go back to reference Crank J (1975) The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford Crank J (1975) The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford
55.
go back to reference Wu Y (2020) Capillary flow of liquid aluminum alloy in wetting and wetting/non-wetting systems. PhD dissertation, University of Kentucky Wu Y (2020) Capillary flow of liquid aluminum alloy in wetting and wetting/non-wetting systems. PhD dissertation, University of Kentucky
56.
go back to reference Yu C-N, Hawksworth DK, Liu W, Sekulic DP (2012) Al brazing under severe alterations of the background atmosphere: A new vs. traditional brazing sheet. In: Proceedings of the 5th International Brazing and Soldering Conference (IBSC). pp 347–354 Yu C-N, Hawksworth DK, Liu W, Sekulic DP (2012) Al brazing under severe alterations of the background atmosphere: A new vs. traditional brazing sheet. In: Proceedings of the 5th International Brazing and Soldering Conference (IBSC). pp 347–354
57.
go back to reference Miller MA (1946) Metal flow and fillet formation in brazing aluminum. Weld J 25:102s–114s Miller MA (1946) Metal flow and fillet formation in brazing aluminum. Weld J 25:102s–114s
58.
go back to reference Mehrer H (2007) Diffusion in solids: fundamentals methods materials. Springer, BerlinCrossRef Mehrer H (2007) Diffusion in solids: fundamentals methods materials. Springer, BerlinCrossRef
Metadata
Title
Si diffusion across the liquid/solid interface of capillary driven (Al–Si)-KxAlyFz micro-layers
Authors
Yangyang Wu
Cheng-Nien Yu
Dusan P. Sekulic
Publication date
03-01-2021
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2021
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05689-x

Other articles of this Issue 12/2021

Journal of Materials Science 12/2021 Go to the issue

Premium Partners