Skip to main content
Top
Published in:

01-12-2016 | Original Article

Sign prediction in social networks based on users reputation and optimism

Authors: Mohsen Shahriari, Omid Askari Sichani, Joobin Gharibshah, Mahdi Jalili

Published in: Social Network Analysis and Mining | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Online social networks are significant part of real life. Participation in social networks varies based on users needs or interests. Often, people participate in these platforms due to their interests. Social media not only consist of dense connected components (communities), but also these platforms are dynamic. The dynamism also includes formation and deformation of connections. In some online social networks, connections are mapped to positive and negative links. Positive connections are sign of friendship or trust, while negative links show enmity or distrust. Community structures and temporal traces can also be observed in signed networks. Networks with both positive and negative connections occur in various fields of applications. Reliable prediction of edge sign has a significant influence on friendship formation or enmity prevention. Prediction of edge signs have been considerably explored, however, we intend to discover simple and noticeable social properties in order to identify the connections’ future in networks consisting of both positive and negative links. In order to approach this goal, we investigate real-world signed social networks and build several prediction models. Additionally, simple social properties of trust/distrust networks are employed. Two local nodal measures, called reputation and optimism, are introduced. A node’s reputation indicates how popular the node is. Conversely, its optimism measures its voting pattern toward others. To reduce inherent biases in voting, we also introduce an algorithm to compute the nodes’ reputation and optimism. These rank-based metrics are computed based on nodes’ ranking scores in the network. Furthermore, we employ reputation and optimism of trustor and trustee to predict the sign of the edges in a number of real signed networks including Epinions, Slashdot and Wikipedia. Finally, several classifiers are applied for this purpose. Our experiments show that these simple features have superior performance over state of the art methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer-Verlag New York Inc, SecaucusMATH Bishop CM (2006) Pattern recognition and machine learning (information science and statistics). Springer-Verlag New York Inc, SecaucusMATH
go back to reference Cao B, Liu N, Yang Q (2010) Transfer learning for collective link prediction in multiple heterogeneous domains. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 159–166 Cao B, Liu N, Yang Q (2010) Transfer learning for collective link prediction in multiple heterogeneous domains. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 159–166
go back to reference Cartwright D, Harary F (1956) Structural balance: a generalization of heider’s theory. Psychol Rev 63(5):277–293CrossRef Cartwright D, Harary F (1956) Structural balance: a generalization of heider’s theory. Psychol Rev 63(5):277–293CrossRef
go back to reference Chiang K-Y, Natarajan N, Tewari A, Dhillon IS (2011) Exploiting longer cycles for link prediction in signed networks. In: Proceedings of the 20th ACM international conference on information and knowledge management, series CIKM ’11. ACM, New York, NY, USA, pp 1157–1162 Chiang K-Y, Natarajan N, Tewari A, Dhillon IS (2011) Exploiting longer cycles for link prediction in signed networks. In: Proceedings of the 20th ACM international conference on information and knowledge management, series CIKM ’11. ACM, New York, NY, USA, pp 1157–1162
go back to reference Davis D, Lichtenwalter R, Chawla NV (2011) Multi-relational link prediction in heterogeneous information networks. In: International conference on advances in social networks analysis and mining (ASONAM) 2011, pp 281–288 Davis D, Lichtenwalter R, Chawla NV (2011) Multi-relational link prediction in heterogeneous information networks. In: International conference on advances in social networks analysis and mining (ASONAM) 2011, pp 281–288
go back to reference Deshpande M, Karypis G (2004) Item-based top-\(n\) recommendation algorithms. ACM Trans Intell Syst Technol 22(1):143–177CrossRef Deshpande M, Karypis G (2004) Item-based top-\(n\) recommendation algorithms. ACM Trans Intell Syst Technol 22(1):143–177CrossRef
go back to reference Dong Y, Ke Q, Wang B, Wu B (2011) Link prediction based on local information. In: International conference on advances in social networks analysis and mining (ASONAM) 2011, pp 382–386 Dong Y, Ke Q, Wang B, Wu B (2011) Link prediction based on local information. In: International conference on advances in social networks analysis and mining (ASONAM) 2011, pp 382–386
go back to reference DuBois T, Golbeck J, Srinivasan A (2011) Predicting trust and distrust in social networks. In: IEEE third international conference on social computing (SocialCom) 2011, pp 418–424 DuBois T, Golbeck J, Srinivasan A (2011) Predicting trust and distrust in social networks. In: IEEE third international conference on social computing (SocialCom) 2011, pp 418–424
go back to reference Easley D, Kleinberg JM (2010) Networks, crowds, and markets—reasoning about a highly connected world. Cambridge University Press, NY, USACrossRefMATH Easley D, Kleinberg JM (2010) Networks, crowds, and markets—reasoning about a highly connected world. Cambridge University Press, NY, USACrossRefMATH
go back to reference Esmailian P, Jalili M (2015) Community detection in signed networks: the role of negative ties in different scales. Sci Rep 5 Esmailian P, Jalili M (2015) Community detection in signed networks: the role of negative ties in different scales. Sci Rep 5
go back to reference Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagation of trust and distrust. In: Proceedings of the 13th international world wide web conference on alternate track papers and posters, series WWW Alt. ’04. ACM, New York, NY, USA, pp 403–412 Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagation of trust and distrust. In: Proceedings of the 13th international world wide web conference on alternate track papers and posters, series WWW Alt. ’04. ACM, New York, NY, USA, pp 403–412
go back to reference Javari A, Jalili M (2014a) Accurate and novel recommendations: an algorithm based on popularity forecasting. ACM Trans Intell Syst Technol 5(4):56. doi:10.1145/2668107 Javari A, Jalili M (2014a) Accurate and novel recommendations: an algorithm based on popularity forecasting. ACM Trans Intell Syst Technol 5(4):56. doi:10.​1145/​2668107
go back to reference Javari A, Jalili M (2014b) Cluster-based collaborative filtering for sign prediction in social networks with positive and negative links. ACM Trans Intell Syst Technol 5(2):24:1–24:19. doi:10.1145/2501977 CrossRef Javari A, Jalili M (2014b) Cluster-based collaborative filtering for sign prediction in social networks with positive and negative links. ACM Trans Intell Syst Technol 5(2):24:1–24:19. doi:10.​1145/​2501977 CrossRef
go back to reference Koren Y (2009) Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, series KDD ’09. ACM, New York, NY and USA, pp 447–456 Koren Y (2009) Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, series KDD ’09. ACM, New York, NY and USA, pp 447–456
go back to reference Kumar R, Novak J, Tomkins A (2006) Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining: ACM SIGKDD 2006, series KDD ’06. ACM, New York, NY, USA, 2006, pp 611–617. doi:10.1007/978-1-4419-6515-8_13 Kumar R, Novak J, Tomkins A (2006) Structure and evolution of online social networks. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining: ACM SIGKDD 2006, series KDD ’06. ACM, New York, NY, USA, 2006, pp 611–617. doi:10.​1007/​978-1-4419-6515-8_​13
go back to reference Kunegis J, Lommatzsch A, Bauckhage C (2009) The slashdot zoo: mining a social network with negative edges. In: Proceedings of the 18th international conference on world wide web, series WWW ’09. ACM, New York, NY, USA, pp 741–750. doi:10.1145/1526709.1526809 Kunegis J, Lommatzsch A, Bauckhage C (2009) The slashdot zoo: mining a social network with negative edges. In: Proceedings of the 18th international conference on world wide web, series WWW ’09. ACM, New York, NY, USA, pp 741–750. doi:10.​1145/​1526709.​1526809
go back to reference Leskovec J, HuttenlocherD, Kleinberg JM (2010a) Predicting positive and negative links in online social networks. In: Proceedings of the 19th international conference on world wide web (WWW ’10), series WWW ’10. ACM Press, New York, NY, USA, pp 641–650. http://doi.acm.org/10.1145/1772690.1772756 Leskovec J, HuttenlocherD, Kleinberg JM (2010a) Predicting positive and negative links in online social networks. In: Proceedings of the 19th international conference on world wide web (WWW ’10), series WWW ’10. ACM Press, New York, NY, USA, pp 641–650. http://​doi.​acm.​org/​10.​1145/​1772690.​1772756
go back to reference Leskovec J, Huttenlocher D, Kleinberg JM (2010b) Signed networks in social media. In: Proceedings of the SIGCHI conference on human factors in computing systems, series CHI ’10. ACM, New York, NY, USA, pp 1361–1370. doi:10.1145/1753326.1753532 Leskovec J, Huttenlocher D, Kleinberg JM (2010b) Signed networks in social media. In: Proceedings of the SIGCHI conference on human factors in computing systems, series CHI ’10. ACM, New York, NY, USA, pp 1361–1370. doi:10.​1145/​1753326.​1753532
go back to reference Leskovec J, Kleinberg JM, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1) Leskovec J, Kleinberg JM, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1)
go back to reference Liben-Nowell D, Kleinberg JM (2003) The link prediction problem for social networks. In: Proceedings of the twelfth international conference on information and knowledge management, series CIKM ’03. ACM, New York, NY, USA, pp 556–559. doi:10.1145/956863.956972 Liben-Nowell D, Kleinberg JM (2003) The link prediction problem for social networks. In: Proceedings of the twelfth international conference on information and knowledge management, series CIKM ’03. ACM, New York, NY, USA, pp 556–559. doi:10.​1145/​956863.​956972
go back to reference Li X, Chen H (2013) Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis Support Syst 54(2):880–890CrossRef Li X, Chen H (2013) Recommendation as link prediction in bipartite graphs: a graph kernel-based machine learning approach. Decis Support Syst 54(2):880–890CrossRef
go back to reference Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Rao B, Krishnapuram B, Tomkins A, Yang Q (eds) Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, pp 243–252 Lichtenwalter RN, Lussier JT, Chawla NV (2010) New perspectives and methods in link prediction. In: Rao B, Krishnapuram B, Tomkins A, Yang Q (eds) Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, pp 243–252
go back to reference Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A 390(6):1150–1170CrossRef Lü L, Zhou T (2011) Link prediction in complex networks: a survey. Phys A 390(6):1150–1170CrossRef
go back to reference Menon AK, Elkan C (2011) Link prediction via matrix factorization. In: Machine learning and knowledge discovery in databases, series lecture notes in computer science, vol 6912. Springer, Berlin, Heidelberg, pp 437–452 Menon AK, Elkan C (2011) Link prediction via matrix factorization. In: Machine learning and knowledge discovery in databases, series lecture notes in computer science, vol 6912. Springer, Berlin, Heidelberg, pp 437–452
go back to reference Mishra A, Bhattacharya A (2011) Finding the bias and prestige of nodes in networks based on trust scores. In: Proceedings of the 20th international conference on world wide web. ACM, Hyderabad, India, pp 567–576 Mishra A, Bhattacharya A (2011) Finding the bias and prestige of nodes in networks based on trust scores. In: Proceedings of the 20th international conference on world wide web. ACM, Hyderabad, India, pp 567–576
go back to reference Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122CrossRef Newman MEJ, Park J (2003) Why social networks are different from other types of networks. Phys Rev E 68:036122CrossRef
go back to reference Patidar A, Agarwal V, Bharadwaj KK (2012) Predicting friends and foes in signed networks using inductive inference and social balance theory. In: Proceedings of the 2012 international conference on advances in social networks analysis and mining (ASONAM 2012), series ASONAM ’12. IEEE Computer Society, Washington, DC, USA, pp 384–388 Patidar A, Agarwal V, Bharadwaj KK (2012) Predicting friends and foes in signed networks using inductive inference and social balance theory. In: Proceedings of the 2012 international conference on advances in social networks analysis and mining (ASONAM 2012), series ASONAM ’12. IEEE Computer Society, Washington, DC, USA, pp 384–388
go back to reference Pujari M, Kanawati R (2011) A supervised machine learning link prediction approach for tag recommendation. In: Online communities and social computing, series lecture notes in computer science, vol 6778. Springer, Berlin, Heidelberg, pp 336–344 Pujari M, Kanawati R (2011) A supervised machine learning link prediction approach for tag recommendation. In: Online communities and social computing, series lecture notes in computer science, vol 6778. Springer, Berlin, Heidelberg, pp 336–344
go back to reference Quinlan JR (2006) Bagging, boosting, and c4.s. In: Proceedings of the thirteenth national conference on Artificial intelligence, vol 1, pp 725–730 Quinlan JR (2006) Bagging, boosting, and c4.s. In: Proceedings of the thirteenth national conference on Artificial intelligence, vol 1, pp 725–730
go back to reference Roth M, Ben-David A, Deutscher D, Flysher G, Horn I, Leichtberg A, Leister N, Matias Y, Merom R (2010) In: Rao B, Krishnapuram B, Tomkins A, Yang Q (eds) Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, pp 233–242 Roth M, Ben-David A, Deutscher D, Flysher G, Horn I, Leichtberg A, Leister N, Matias Y, Merom R (2010) In: Rao B, Krishnapuram B, Tomkins A, Yang Q (eds) Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, NY, pp 233–242
go back to reference Rowe M, Milan S, Herith A (2012) Who will follow whom? exploiting semantics for link prediction in attention-information networks. In: Proceedings of the 11th international conference on the semantic web, series ISWC’12. Springer, pp 476–491. doi:10.1007/978-3-642-35176-1_30 Rowe M, Milan S, Herith A (2012) Who will follow whom? exploiting semantics for link prediction in attention-information networks. In: Proceedings of the 11th international conference on the semantic web, series ISWC’12. Springer, pp 476–491. doi:10.​1007/​978-3-642-35176-1_​30
go back to reference Sarwar BM, Karypis G, Konstan JA, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Shen VY, Saito N, Lyu MR, Zurko ME (eds) The tenth international world wide web conference. ACM, New York, NY, USA, pp 285–295 Sarwar BM, Karypis G, Konstan JA, Riedl J (2001) Item-based collaborative filtering recommendation algorithms. In: Shen VY, Saito N, Lyu MR, Zurko ME (eds) The tenth international world wide web conference. ACM, New York, NY, USA, pp 285–295
go back to reference Steurer M, Trattner C (2013) Acquaintance or partner? predicting partnership in online and location-based social networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2013). IEEE/ACM, pp 372–379 Steurer M, Trattner C (2013) Acquaintance or partner? predicting partnership in online and location-based social networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining (ASONAM 2013). IEEE/ACM, pp 372–379
go back to reference Symeonidis P, Nikolaos M (2013) Spectral clustering for link prediction in social networks with positive and negative links. Soc Netw Anal Min (SNAM) 3:1433–1447CrossRef Symeonidis P, Nikolaos M (2013) Spectral clustering for link prediction in social networks with positive and negative links. Soc Netw Anal Min (SNAM) 3:1433–1447CrossRef
go back to reference Symeonidis P, Tiakas E, Monolopoulos Y (2010) Transitive node similarity for link prediction in social networks with positive and negative. In: Proceedings of the fourth ACM conference on recommender systems. ACM, pp 183–190 Symeonidis P, Tiakas E, Monolopoulos Y (2010) Transitive node similarity for link prediction in social networks with positive and negative. In: Proceedings of the fourth ACM conference on recommender systems. ACM, pp 183–190
go back to reference Tan P-N, Steinbach M, Kumar V (2005) Introduction to data mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston Tan P-N, Steinbach M, Kumar V (2005) Introduction to data mining, 1st edn. Addison-Wesley Longman Publishing Co., Inc, Boston
go back to reference Tang J, Chang S, Aggarwal CC, Liu H (2014) Negative link prediction in social media. In: Proceedings of the Eight ACM international conference on web search and data mining, WSDM '15. ACM, New York, NY, USA, pp 87–96 Tang J, Chang S, Aggarwal CC, Liu H (2014) Negative link prediction in social media. In: Proceedings of the Eight ACM international conference on web search and data mining, WSDM '15. ACM, New York, NY, USA, pp 87–96
go back to reference Tang J, Chang Y, Aggarwal CC, Liu h (2016) A survey of signed network mining in social media. ACM Comput Surv 49(3):42. doi:10.1145/2956185 Tang J, Chang Y, Aggarwal CC, Liu h (2016) A survey of signed network mining in social media. ACM Comput Surv 49(3):42. doi:10.​1145/​2956185
go back to reference Tylenda T, Angelova R, Bedathur S (2009) Towards time-aware link prediction in evolving social networks. In: Giles CL (ed) Proceedings of the 3rd workshop on social network mining and analysis. ACM, New York, NY, pp 9:1–9:10 (Article No. 9) Tylenda T, Angelova R, Bedathur S (2009) Towards time-aware link prediction in evolving social networks. In: Giles CL (ed) Proceedings of the 3rd workshop on social network mining and analysis. ACM, New York, NY, pp 9:1–9:10 (Article No. 9)
go back to reference Wang P, Xu B, Wu Y, Zhou X (2015) Link prediction in social networks: the state-of-the-art. Sci China Inf Sci 58(1):1–38 Wang P, Xu B, Wu Y, Zhou X (2015) Link prediction in social networks: the state-of-the-art. Sci China Inf Sci 58(1):1–38
go back to reference Wang D, Pedreschi D, Song C, Giannotti F, Barabási A-L (2011) Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, series KDD’11. ACM, New York, NY, USA, pp 1100–1108 Wang D, Pedreschi D, Song C, Giannotti F, Barabási A-L (2011) Human mobility, social ties, and link prediction. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, series KDD’11. ACM, New York, NY, USA, pp 1100–1108
go back to reference Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, PrincetonMATH Watts DJ (1999) Small worlds: the dynamics of networks between order and randomness. Princeton University Press, PrincetonMATH
go back to reference Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442CrossRef Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442CrossRef
go back to reference Yang S-H, Smola A, Long B, Zha H, Chang Y (2012) Friend or frenemy? predicting signed ties in social networks. In: Hersh W, Callan J, Maarek Y, Sanderson M (eds) Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, Portland, OR, USA, pp 555–564. doi:10.1145/2348283.2348359 Yang S-H, Smola A, Long B, Zha H, Chang Y (2012) Friend or frenemy? predicting signed ties in social networks. In: Hersh W, Callan J, Maarek Y, Sanderson M (eds) Proceedings of the 35th international ACM SIGIR conference on research and development in information retrieval, Portland, OR, USA, pp 555–564. doi:10.​1145/​2348283.​2348359
go back to reference Zolfaghar K, Aghaie A (2010) Mining trust and distrust relationships in social web applications. In: IEEE international conference on intelligent computer communication and processing (ICCP) 2010, pp 73–80 Zolfaghar K, Aghaie A (2010) Mining trust and distrust relationships in social web applications. In: IEEE international conference on intelligent computer communication and processing (ICCP) 2010, pp 73–80
Metadata
Title
Sign prediction in social networks based on users reputation and optimism
Authors
Mohsen Shahriari
Omid Askari Sichani
Joobin Gharibshah
Mahdi Jalili
Publication date
01-12-2016
Publisher
Springer Vienna
Published in
Social Network Analysis and Mining / Issue 1/2016
Print ISSN: 1869-5450
Electronic ISSN: 1869-5469
DOI
https://doi.org/10.1007/s13278-016-0401-6

Premium Partner