Skip to main content
Top
Published in:

08-08-2016

Signature of multiferroicity and impedance analysis of Co1−xZnxFe2−xLaxO4 nanoparticles

Authors: S. Shankar, Manish Kumar, P. Brijmohan, Shiv Kumar, O. P. Thakur, Anup K. Ghosh

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Effects of Zn2+/La3+ co-doping on multiferroic and impedance properties of co-precipitation derived Co1−xZnxFe2−xLaxO4 (x = 0.0, 0.1 and 0.3) nanoparticles have been investigated. The powder X-ray diffraction study confirms the pure phase, cubic spinal structure and particle size varies between 20 and 22 nm. The particle size decreases with increase in co-substitution indicating the short range ordering in CoFe2O4. The relaxations in dielectric constant follow Maxwell–Wagner polarization and arise out of charge transfer of Co and Fe ions in multi-oxidation states. The co-substitution of Zn2+/La3+ in CoFe2O4 at A and B sites respectively results in improvement of Nquist plot and impedance of the nanoparticle which confirms space charge polarization caused by piling of charges at the interface of grain and grain boundries. An unusual relaxation behavior is also observed in co-substituted CoFe2O4 which may be useful in enhancing the multiferroic properties at room temperature. It could be noted the GBs are more resistive as compared to the grains, resulting in high impedance value and non-Debye type behavior in the Co1−xZnxFe2−xLaxO4 nano particles. Low and stable coercivity (Hc) of 393.13 Oe have been observed and a stable saturation magnetization has been achieved at room temperature. P–E loops have rounded corners which may be the due to the aggregation of CoFe2O4 nanoparticles with each other resulting out of their strong magnetization. Simultaneous occurrence of saturation magnetization and weak ferroelectricity (P–E loop) with high values of impedance and dielectric constant confirm the signature of multiferroicity in Co1−xZnxFe2−xLaxO4 nanoparticles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Business + Economics & Engineering + Technology"

Online-Abonnement

Springer Professional "Business + Economics & Engineering + Technology" gives you access to:

  • more than 102.000 books
  • more than 537 journals

from the following subject areas:

  • Automotive
  • Construction + Real Estate
  • Business IT + Informatics
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Mechanical Engineering + Materials
  • Insurance + Risk


Secure your knowledge advantage now!

Springer Professional "Engineering + Technology"

Online-Abonnement

Springer Professional "Engineering + Technology" gives you access to:

  • more than 67.000 books
  • more than 390 journals

from the following specialised fileds:

  • Automotive
  • Business IT + Informatics
  • Construction + Real Estate
  • Electrical Engineering + Electronics
  • Energy + Sustainability
  • Mechanical Engineering + Materials





 

Secure your knowledge advantage now!

Springer Professional "Business + Economics"

Online-Abonnement

Springer Professional "Business + Economics" gives you access to:

  • more than 67.000 books
  • more than 340 journals

from the following specialised fileds:

  • Construction + Real Estate
  • Business IT + Informatics
  • Finance + Banking
  • Management + Leadership
  • Marketing + Sales
  • Insurance + Risk



Secure your knowledge advantage now!

Literature
This content is only visible if you are logged in and have the appropriate permissions.
Metadata
Title
Signature of multiferroicity and impedance analysis of Co1−xZnxFe2−xLaxO4 nanoparticles
Authors
S. Shankar
Manish Kumar
P. Brijmohan
Shiv Kumar
O. P. Thakur
Anup K. Ghosh
Publication date
08-08-2016
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2016
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5473-6