Skip to main content
Top
Published in:

2021 | OriginalPaper | Chapter

1. Significance of Ammonothermal Synthesis for Nitride Materials

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter is intended to introduce the ammonothermal synthesis as an alternative technique to other methods for nitride materials production. Properties of liquid and supercritical ammonia with focus on use as a solvent for nitride synthesis and crystal growth are discussed and compared to those of water. Finally, inherent drawbacks of the use of fluidic ammonia arising from its chemical properties are considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference P. Höhn, R. Niewa, Nitrides of non-main group elements, in Handbook of Solid State Chemistry, vol. 1, Materials and Structure of Solids, ed. by R. Dronskowski, S. Kikkawa, A. Stein (Wiley-VCH, Weinheim, Germany, 2017), p. 251. P. Höhn, R. Niewa, Nitrides of non-main group elements, in Handbook of Solid State Chemistry, vol. 1, Materials and Structure of Solids, ed. by R. Dronskowski, S. Kikkawa, A. Stein (Wiley-VCH, Weinheim, Germany, 2017), p. 251.
2.
go back to reference W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Congruent melting of gallium nitride at 6 GPa and its application to single crystal growth. Nat. Mater. 2, 735–738 (2003)CrossRef W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, Congruent melting of gallium nitride at 6 GPa and its application to single crystal growth. Nat. Mater. 2, 735–738 (2003)CrossRef
3.
go back to reference H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982) H. Jacobs, D. Schmidt, High-pressure ammonolysis in solid-state chemistry. Curr. Top. Mater. Sci. 8, 387–427 (1982)
4.
go back to reference M. Zeuner, S. Pagano, W. Schnick, Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. Angew. Chem. Int. Ed. 50, 7754–7775 (2011)CrossRef M. Zeuner, S. Pagano, W. Schnick, Nitridosilicates and oxonitridosilicates: from ceramic materials to structural and functional diversity. Angew. Chem. Int. Ed. 50, 7754–7775 (2011)CrossRef
5.
go back to reference H. Jacobs, E. von Pinkiowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN2 mit M = Na, K, Rb und Cs. J. Less-Common Met. 146, 147–160 (1989)CrossRef H. Jacobs, E. von Pinkiowski, Synthese ternärer Nitride von Alkalimetallen: Verbindungen mit Tantal, MTaN2 mit M = Na, K, Rb und Cs. J. Less-Common Met. 146, 147–160 (1989)CrossRef
6.
go back to reference A. Miura, Low-temperature synthesis and rational design of nitrides and oxynitrides for functional material development. J. Ceram. Soc. Jpn. 125, 552–558 (2017)CrossRef A. Miura, Low-temperature synthesis and rational design of nitrides and oxynitrides for functional material development. J. Ceram. Soc. Jpn. 125, 552–558 (2017)CrossRef
7.
go back to reference S. Broll, W. Jeitschko, The ternary rare-earth chromium nitrides Ce2CrN3 and Ln3Cr10–xN11 with Ln = La, Ce, Pr. Z. Naturforsch. B 50, 905–912 (1995)CrossRef S. Broll, W. Jeitschko, The ternary rare-earth chromium nitrides Ce2CrN3 and Ln3Cr10–xN11 with Ln = La, Ce, Pr. Z. Naturforsch. B 50, 905–912 (1995)CrossRef
8.
go back to reference M. Pathak, D. Stoiber, M. Bobnar, A. Ovchinnikov, A. Ormeci, R. Niewa, P. Höhn, Synthesis, characterization and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li2(Ca3N)2[Ga4] and Li2(Sr3N)2[Ga4]. Z. Allg. Anorg. Chem. 643, 1557–1563 (2017)CrossRef M. Pathak, D. Stoiber, M. Bobnar, A. Ovchinnikov, A. Ormeci, R. Niewa, P. Höhn, Synthesis, characterization and chemical bonding analysis of the lithium alkaline-earth metal gallide nitrides Li2(Ca3N)2[Ga4] and Li2(Sr3N)2[Ga4]. Z. Allg. Anorg. Chem. 643, 1557–1563 (2017)CrossRef
9.
go back to reference A. Simon, Group 1 and 2 suboxides and subnitrides—metals with atomic size holes and tunnels. Coord. Chem. Rev. 163, 253–270 (1997)CrossRef A. Simon, Group 1 and 2 suboxides and subnitrides—metals with atomic size holes and tunnels. Coord. Chem. Rev. 163, 253–270 (1997)CrossRef
10.
go back to reference R. Niewa, H. Jacobs, Group V and VI alkali nitridometalates: a growing class of compounds with structures related to silicate chemistry. Chem. Rev. 96, 2053–2062 (1996)CrossRef R. Niewa, H. Jacobs, Group V and VI alkali nitridometalates: a growing class of compounds with structures related to silicate chemistry. Chem. Rev. 96, 2053–2062 (1996)CrossRef
11.
go back to reference T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014)CrossRef T.M.M. Richter, R. Niewa, Chemistry of ammonothermal synthesis. Inorganics 2, 29–78 (2014)CrossRef
12.
go back to reference A. Rabenau, The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. 24, 1026–1040 (1985)CrossRef A. Rabenau, The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. 24, 1026–1040 (1985)CrossRef
13.
go back to reference G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger, Chromium compounds, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 9 (Wiley-VCH, Weinheim, Germany, 2000), pp. 157–191 G. Anger, J. Halstenberg, K. Hochgeschwender, C. Scherhag, U. Korallus, H. Knopf, P. Schmidt, M. Ohlinger, Chromium compounds, in Ullmann’s Encyclopedia of Industrial Chemistry, vol. 9 (Wiley-VCH, Weinheim, Germany, 2000), pp. 157–191
14.
go back to reference E.C. Franklin, C.A. Kraus, Some properties of liquid ammonia. Am. Chem. J. 21, 8–14 (1899) E.C. Franklin, C.A. Kraus, Some properties of liquid ammonia. Am. Chem. J. 21, 8–14 (1899)
15.
go back to reference A.V. Bandura, S.N. Lvov, The ionization constant of water over wide ranges of temperature and density. J. Phys. Chem. Ref. Data 35, 15–30 (2006)CrossRef A.V. Bandura, S.N. Lvov, The ionization constant of water over wide ranges of temperature and density. J. Phys. Chem. Ref. Data 35, 15–30 (2006)CrossRef
16.
go back to reference D. Zahn, A molecular simulation study of the auto-protolysis of ammonia as a function of temperature. Chem. Phys. Let. 682, 55–59 (2017)CrossRef D. Zahn, A molecular simulation study of the auto-protolysis of ammonia as a function of temperature. Chem. Phys. Let. 682, 55–59 (2017)CrossRef
17.
go back to reference T.M. Seward, Metal complex formation in aqueous solutions at elevated temperatures and pressures. Phys. Chem. Earth 13–14, 113–132 (1982) T.M. Seward, Metal complex formation in aqueous solutions at elevated temperatures and pressures. Phys. Chem. Earth 13–14, 113–132 (1982)
18.
go back to reference J.B. Chlistunov, K.P. Johnston, UV/vis spectroscopic determination of the dissociation constant of bichromate from 160 to 400 nm. J. Phys. Chem. B 102, 3993–4003 (1998)CrossRef J.B. Chlistunov, K.P. Johnston, UV/vis spectroscopic determination of the dissociation constant of bichromate from 160 to 400 nm. J. Phys. Chem. B 102, 3993–4003 (1998)CrossRef
19.
go back to reference A. Holleman, N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102nd edn. (de Gruyter, Berlin, Germany, 2007)CrossRef A. Holleman, N. Wiberg, E. Wiberg, Lehrbuch der Anorganischen Chemie, 102nd edn. (de Gruyter, Berlin, Germany, 2007)CrossRef
20.
go back to reference P. Böttcher, U. Kretschmann, Darstellung und Kristallstruktur von Dirubidiumpentatellurid, Rb2Te5. J. Less-Common Met. 95, 81–91 (1983)CrossRef P. Böttcher, U. Kretschmann, Darstellung und Kristallstruktur von Dirubidiumpentatellurid, Rb2Te5. J. Less-Common Met. 95, 81–91 (1983)CrossRef
21.
go back to reference A.P. Purdy, Ammonothermal crystal growth of sulfide materials. Chem. Mater. 10, 692–694 (1998)CrossRef A.P. Purdy, Ammonothermal crystal growth of sulfide materials. Chem. Mater. 10, 692–694 (1998)CrossRef
22.
go back to reference H. Jacobs, J. Kockelkorn, T. Tacke, Hydroxide des Natriums, Kaliums und Rubidiums: Einkristallzüchtung und röntgenographische Strukturbestimmung an der bei Raumtemperatur stabilen Modifikation. Z. Anorg. Allg. Chem. 531, 119–124 (1985)CrossRef H. Jacobs, J. Kockelkorn, T. Tacke, Hydroxide des Natriums, Kaliums und Rubidiums: Einkristallzüchtung und röntgenographische Strukturbestimmung an der bei Raumtemperatur stabilen Modifikation. Z. Anorg. Allg. Chem. 531, 119–124 (1985)CrossRef
23.
go back to reference A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Des. 3, 121–124 (2003)CrossRef A.P. Purdy, S. Case, C. George, Ammonothermal crystal growth of germanium and its alloys: synthesis of a hollow metallic crystal. Cryst. Growth Des. 3, 121–124 (2003)CrossRef
24.
go back to reference P. Böttcher, J. Getzschmann, R. Keller, Zur Kenntnis der Dialkalimetalldichalkogenide β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2 und Rb2Te2. Z. Anorg. Allg. Chem. 619, 476–488 (1993)CrossRef P. Böttcher, J. Getzschmann, R. Keller, Zur Kenntnis der Dialkalimetalldichalkogenide β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2 und Rb2Te2. Z. Anorg. Allg. Chem. 619, 476–488 (1993)CrossRef
25.
go back to reference D.M. Young, G.L. Schimek, J.W. Kolis, Synthesis and characterization of [Yb(NH3)8][Cu(S4)2] ⋅ NH3, [Yb(NH3)8][Ag(S4)2] ⋅ 2 NH3, and [La(NH3)9][Cu(S4)2] in supercritical ammonia: metal sulfide salts of the first homoleptic lanthanide ammine complexes. Inorg. Chem. 33, 7620–7625 (1996)CrossRef D.M. Young, G.L. Schimek, J.W. Kolis, Synthesis and characterization of [Yb(NH3)8][Cu(S4)2] ⋅ NH3, [Yb(NH3)8][Ag(S4)2] ⋅ 2 NH3, and [La(NH3)9][Cu(S4)2] in supercritical ammonia: metal sulfide salts of the first homoleptic lanthanide ammine complexes. Inorg. Chem. 33, 7620–7625 (1996)CrossRef
26.
go back to reference G.L. Schimek, G.W. Drake, J.W. Kolis, Crystal structure of calcium heptaammine hexasulfide, Ca(NH3)7S6. Acta Chem. Scand. 53, 145–148 (1999)CrossRef G.L. Schimek, G.W. Drake, J.W. Kolis, Crystal structure of calcium heptaammine hexasulfide, Ca(NH3)7S6. Acta Chem. Scand. 53, 145–148 (1999)CrossRef
27.
go back to reference M. Monz, H. Jacobs, Kaliumamidotrioxogermanate(IV)—Wasserstoff-Brückenbindungen in K3GeO3NH2 und K3GeO3NH2 ⋅ KNH2. Z. Anorg. Allg. Chem. 621, 137–142 (1995)CrossRef M. Monz, H. Jacobs, Kaliumamidotrioxogermanate(IV)—Wasserstoff-Brückenbindungen in K3GeO3NH2 und K3GeO3NH2 ⋅ KNH2. Z. Anorg. Allg. Chem. 621, 137–142 (1995)CrossRef
28.
go back to reference T.J. Hennig, H. Jacobs, Strukturchemische Verwandtschaft von Kaliumhexahydroxoscandat(III), K3[Sc(OH)3] mit den isotypen Hydroxometallaten Rb3[Sc(OH)3], K3[Cr(OH)3] und Rb3[Cr(OH)3]. Z. Anorg. Allg. Chem. 616, 71–78 (1992)CrossRef T.J. Hennig, H. Jacobs, Strukturchemische Verwandtschaft von Kaliumhexahydroxoscandat(III), K3[Sc(OH)3] mit den isotypen Hydroxometallaten Rb3[Sc(OH)3], K3[Cr(OH)3] und Rb3[Cr(OH)3]. Z. Anorg. Allg. Chem. 616, 71–78 (1992)CrossRef
29.
go back to reference H. Jacobs, J. Bock, Kaliumhexahydroxochromat(III), K3[Cr(OH)6]: Beispiel eines neuen Syntheseweges für Metallhydroxide und Hydroxometallate. Z. Anorg. Allg. Chem. 546, 33–41 (1987)CrossRef H. Jacobs, J. Bock, Kaliumhexahydroxochromat(III), K3[Cr(OH)6]: Beispiel eines neuen Syntheseweges für Metallhydroxide und Hydroxometallate. Z. Anorg. Allg. Chem. 546, 33–41 (1987)CrossRef
30.
go back to reference S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical ammonia solutions. J. Supercrit. Fluids 110, 193–229 (2016)CrossRef S. Pimputkar, T.F. Malkowski, S. Griffiths, A. Espenlaub, S. Suihkonen, J.S. Speck, S. Nakamura, Stability of materials in supercritical ammonia solutions. J. Supercrit. Fluids 110, 193–229 (2016)CrossRef
31.
go back to reference G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn3N2. J. Alloys Compd. 183, 345–362 (1992)CrossRef G. Kreiner, H. Jacobs, Magnetische Struktur von η-Mn3N2. J. Alloys Compd. 183, 345–362 (1992)CrossRef
32.
go back to reference H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im System Mn-N: Mn3N2. J. Less-Common Met. 96, 323–329 (1984)CrossRef H. Jacobs, C. Stüve, Hochdrucksynthese der η-Phase im System Mn-N: Mn3N2. J. Less-Common Met. 96, 323–329 (1984)CrossRef
33.
go back to reference H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ′-Fe4N and ε-Fe3N. J. Alloys Compd. 227, 10–17 (1995)CrossRef H. Jacobs, D. Rechenbach, U. Zachwieja, Structure determination of γ′-Fe4N and ε-Fe3N. J. Alloys Compd. 227, 10–17 (1995)CrossRef
34.
go back to reference H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe4N und ε-Fe3N. Härterei Techn. Mitt. 50, 205–213 (1995) H. Jacobs, D. Rechenbach, U. Zachwieja, Untersuchungen zur Struktur und zum Zerfall von Eisennitriden—γ′-Fe4N und ε-Fe3N. Härterei Techn. Mitt. 50, 205–213 (1995)
35.
go back to reference H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987)CrossRef H. Jacobs, J. Bock, Einkristallzüchtung von γ′-Fe4N in überkritischem Ammoniak. J. Less-Common Met. 134, 215–220 (1987)CrossRef
36.
go back to reference U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175–184 (1990)CrossRef U. Zachwieja, H. Jacobs, Ammonothermalsynthese von Kupfernitrid, Cu3N. J. Less-Common Met. 161, 175–184 (1990)CrossRef
37.
go back to reference H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978)CrossRef H. Jacobs, U. Fink, Untersuchung des Systems Kalium/Europium/Ammoniak. Z. Anorg. Allg. Chem. 438, 151–159 (1978)CrossRef
38.
go back to reference H. Jacobs, H. Scholze, Untersuchung des Systems Na/La/NH3. Z. Anorg. Allg. Chem. 427, 8–16 (1976)CrossRef H. Jacobs, H. Scholze, Untersuchung des Systems Na/La/NH3. Z. Anorg. Allg. Chem. 427, 8–16 (1976)CrossRef
39.
go back to reference R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)CrossRef R. Juza, H. Jacobs, Ammonothermal synthesis of magnesium and beryllium amides. Angew. Chem. Int. Ed. 5, 247 (1966)CrossRef
40.
go back to reference A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973)CrossRef A. Stuhr, H. Jacobs, R. Juza, Amide des Yttriums. Z. Anorg. Allg. Chem. 395, 291–300 (1973)CrossRef
41.
go back to reference B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs2(NH2)N3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983)CrossRef B. Harbrecht, H. Jacobs, Hochdrucksynthese von Caesiumamidazid, Cs2(NH2)N3 aus Caesiummetall und Ammoniak. Z. Anorg. Allg. Chem. 500, 181–187 (1983)CrossRef
42.
go back to reference M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008)CrossRef M. Zając, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmołek, K. Korona, M. Kamińska, A. Twardowski, Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr). J. Alloys Compd. 456, 324–338 (2008)CrossRef
44.
go back to reference R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kamińska, MRS Internet J. Nitride Semicond. Res. 3, e25 (1998)CrossRef R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, M. Palczewska, A. Wysmolek, M. Kamińska, MRS Internet J. Nitride Semicond. Res. 3, e25 (1998)CrossRef
45.
go back to reference H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi2N3. Eur. J. Solid State Inorg. Chem. 30, 45–53 (1993) H. Jacobs, H. Mengis, Preparation and crystal structure of a sodium silicon nitride, NaSi2N3. Eur. J. Solid State Inorg. Chem. 30, 45–53 (1993)
46.
go back to reference Th Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li2Ta3N5. J. Alloys Compd. 176, 47–60 (1991)CrossRef Th Brokamp, H. Jacobs, Synthese und Kristallstruktur eines gemischtvalenten Lithium-Tantalnitrids Li2Ta3N5. J. Alloys Compd. 176, 47–60 (1991)CrossRef
47.
go back to reference H. Jacobs, R. Nymwegen, Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 623, 429–433 (1997)CrossRef H. Jacobs, R. Nymwegen, Darstellung und Kristallstruktur eines Kaliumnitridophosphats, K3P6N11. Z. Anorg. Allg. Chem. 623, 429–433 (1997)CrossRef
48.
go back to reference E. von Pinkowski, Darstellung und Charakterisierung von Alkalimetalltantalnitriden und Untersuchungen am System Natriumamid/Natriumazid. Doctoral Thesis (Universität Dortmund, 1988) E. von Pinkowski, Darstellung und Charakterisierung von Alkalimetalltantalnitriden und Untersuchungen am System Natriumamid/Natriumazid. Doctoral Thesis (Universität Dortmund, 1988)
49.
go back to reference J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864–11879 (2018)CrossRef J. Häusler, W. Schnick, Ammonothermal synthesis of nitrides: recent developments and future perspectives. Chem. Eur. J. 24, 11864–11879 (2018)CrossRef
50.
go back to reference M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides: K5–xMx(CN2)2+x(HCN2)1–x (M = Sr, Eu) and Na4.32Sr0.68(CN2)2.68(HCN2)0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017) M. Mallmann, J. Häusler, N. Cordes, W. Schnick, Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides: K5–xMx(CN2)2+x(HCN2)1–x (M = Sr, Eu) and Na4.32Sr0.68(CN2)2.68(HCN2)0.32. Z. Anorg. Allg. Chem. 643, 1956–1961 (2017)
51.
go back to reference S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na5[CN2]2[CN], (Li, Na)5[CN2]2[CN], and K2[CN2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012)CrossRef S. Zhang, D.A. Zherebtsov, F.J. DiSalvo, R. Niewa, Na5[CN2]2[CN], (Li, Na)5[CN2]2[CN], and K2[CN2]: carbodiimides from high-pressure synthesis. Z. Anorg. Allg. Chem. 638, 2111–2116 (2012)CrossRef
52.
go back to reference J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007)CrossRef J. Li, T. Watanabe, H. Wada, T. Setoyama, M. Yoshimura, Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chem. Mater. 19, 3592–3594 (2007)CrossRef
53.
go back to reference Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN3:Ce3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66–69 (2016)CrossRef Y. Maruyama, T. Watanabe, Low-temperature synthesis of CaAlSiN3:Ce3+ using the ammonothermal method. J. Ceram. Soc. Jpn. 124, 66–69 (2016)CrossRef
54.
go back to reference T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012)CrossRef T. Watanabe, K. Nonaka, J. Li, K. Kishida, M. Yoshimura, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3 for a nitride red phosphor. J. Ceram. Soc. Jpn. 120, 500–502 (2012)CrossRef
55.
go back to reference K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014)CrossRef K. Nonaka, K. Kishida, C. Izawa, T. Watanabe, Low temperature ammonothermal synthesis of europium-doped SrAlSiN3: effect of mineralizers. J. Ceram. Soc. Jpn. 122, 17–20 (2014)CrossRef
56.
go back to reference Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN3:Ce3+ phosphor. J. Ceram. Soc. Jpn. 125, 399–401 (2017)CrossRef Y. Maruyama, Y. Yanase, T. Watanabe, Ammonothermal synthesis of charge-compensated SrAlSiN3:Ce3+ phosphor. J. Ceram. Soc. Jpn. 125, 399–401 (2017)CrossRef
57.
go back to reference J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C.L. Kimmel, N.S.A. Alt, E. Schluecker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN3. Chem. Eur. J. 23, 2583–2590 (2017)CrossRef J. Häusler, L. Neudert, M. Mallmann, R. Niklaus, A.-C.L. Kimmel, N.S.A. Alt, E. Schluecker, O. Oeckler, W. Schnick, Ammonothermal synthesis of novel nitrides: case study on CaGaSiN3. Chem. Eur. J. 23, 2583–2590 (2017)CrossRef
58.
go back to reference T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017)CrossRef T. Toshima, K. Kishida, Y. Maruyama, T. Watanabe, Low-temperature synthesis of BaTaO2N by an ammonothermal method. J. Ceram. Soc. Jpn. 125, 643–647 (2017)CrossRef
59.
go back to reference C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON2. Adv. Mater. Sci. Eng. 465720 (2014) C. Izawa, T. Kobayashi, K. Kishida, T. Watanabe, Ammonothermal synthesis and photocatalytic activity of lower valence cation-doped LaNbON2. Adv. Mater. Sci. Eng. 465720 (2014)
60.
go back to reference T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON2. Chem. Lett. 40, 1101–1102 (2011) T. Watanabe, K. Tajima, J. Li, N. Matsushita, M. Yoshimura, Low-temperature ammonothermal synthesis of LaTaON2. Chem. Lett. 40, 1101–1102 (2011)
61.
go back to reference N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017)CrossRef N. Cordes, W. Schnick, Ammonothermal synthesis of crystalline oxonitride perovskites LnTaON2 (Ln = La, Ce, Pr, Nd, Sm, Gd). Chem. Eur. J. 23, 11410–11415 (2017)CrossRef
62.
go back to reference J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275–12282 (2017)CrossRef J. Häusler, S. Schimmel, P. Wellmann, W. Schnick, Ammonothermal synthesis of earth-abundant nitride semiconductors ZnSiN2 and ZnGeN2 and dissolution monitoring by in situ X-ray imaging. Chem. Eur. J. 23, 12275–12282 (2017)CrossRef
63.
go back to reference J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018)CrossRef J. Häusler, R. Niklaus, J. Minár, W. Schnick, Ammonothermal synthesis and optical properties of ternary nitride semiconductors Mg-IV-N2, Mn-IV-N2 and Li-IV2-N3 (IV = Si, Ge). Chem. Eur. J. 24, 1686–1693 (2018)CrossRef
64.
go back to reference J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridogermanate Ca1–xLixAl1–xGe1+xN3 (x ≈ 0.2). Eur. J. Inorg. Chem. 759–764 (2018) J. Häusler, L. Eisenburger, O. Oeckler, W. Schnick, Ammonothermal synthesis and crystal structure of the nitridogermanate Ca1–xLixAl1–xGe1+xN3 (x ≈ 0.2). Eur. J. Inorg. Chem. 759–764 (2018)
65.
go back to reference H.W. Xiang, Vapor pressures, critical parameters, boiling points, and triple points of ammonia and trideuteroammonia. J. Phys. Chem. Ref. Data 33, 1005–1011 (2004)CrossRef H.W. Xiang, Vapor pressures, critical parameters, boiling points, and triple points of ammonia and trideuteroammonia. J. Phys. Chem. Ref. Data 33, 1005–1011 (2004)CrossRef
66.
go back to reference S. Rondinini, P. Longhi, P.R. Mussini, T. Mussini, Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 59, 1693–1702 (1987)CrossRef S. Rondinini, P. Longhi, P.R. Mussini, T. Mussini, Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl. Chem. 59, 1693–1702 (1987)CrossRef
67.
go back to reference B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014)CrossRef B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schluecker, Corrosive degeneration of autoclaves for the ammonothermal synthesis: experimental approach and first results. Chem. Eng. Technol. 37, 1903–1906 (2014)CrossRef
68.
go back to reference B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schuecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environment. J. Supercrit. Fluids 95, 158–166 (2014)CrossRef B. Hertweck, T.G. Steigerwald, N.S.A. Alt, E. Schuecker, Different corrosion behavior of autoclaves made of nickel base alloy 718 in ammonobasic and ammonoacidic environment. J. Supercrit. Fluids 95, 158–166 (2014)CrossRef
69.
go back to reference S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016)CrossRef S. Griffiths, S. Pimputkar, J.S. Speck, S. Nakamura, On the solubility of gallium nitride in supercritical ammonia-sodium solutions. J. Cryst. Growth 456, 5–14 (2016)CrossRef
70.
go back to reference T.G. Steigerwald, J. Balouschek, B. Hertweck, A.-C.L. Kimmel, N.S.A. Alt, E. Schluecker, In situ investigation of decomposing ammonia and ammonobasic solutions under supercritical conditions via UV/vis and Raman Spectroscopy. J. Supercrit. Fluids 134, 96–105 (2018)CrossRef T.G. Steigerwald, J. Balouschek, B. Hertweck, A.-C.L. Kimmel, N.S.A. Alt, E. Schluecker, In situ investigation of decomposing ammonia and ammonobasic solutions under supercritical conditions via UV/vis and Raman Spectroscopy. J. Supercrit. Fluids 134, 96–105 (2018)CrossRef
Metadata
Title
Significance of Ammonothermal Synthesis for Nitride Materials
Author
Rainer Niewa
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-56305-9_1