Skip to main content
Top

2020 | OriginalPaper | Chapter

29. Silicon Carbide-Based Lightweight Mirror Blanks for Space Optics Applications

Authors : Dulal Chandra Jana, Bhaskar Prasad Saha

Published in: Handbook of Advanced Ceramics and Composites

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The advantages of the reflective optics over the refractive one for optical imaging in the spaceborne telescopes have been demonstrated over the years. The performance of such optical systems is continually increasing through the use of lightweight and larger mirrors. The use of several materials including ultra-low expansion (ULE) glass, Zerodur glass-ceramics, monolithic aluminum, optical grade beryllium, etc. as the mirrors for space optics is known for decades. Nowadays, silicon carbide (SiC)-based space mirrors have become the most attractive choice because of their excellent mechanical and thermal figure of merits. The superior mechanical and thermal properties of SiC allow in accommodating the complex designs and higher lightweighting over the conventional materials. In addition, a very high surface figure precision (< λ/20) and very low surface roughness (~ 0.1 nm) can be achieved in SiC. This chapter discusses the superiority of SiC as mirrors over the existing materials for application in space optics. Subsequently, the detailed processing of SiC-based lightweight mirror blanks involving the production of sintered SiC (S-SiC) substrates followed by cladding with a fully dense SiC coating by chemical vapor deposition (CVD) technique is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Matson LE, Chen MY, deBlonk D, Palusinski IA (2008) Silicon carbide technologies for lightweighted aerospace mirrors. Paper presented at the advanced Maui optical and space surveillance technologies conference, Maui, HI 16–19 September 2008 Matson LE, Chen MY, deBlonk D, Palusinski IA (2008) Silicon carbide technologies for lightweighted aerospace mirrors. Paper presented at the advanced Maui optical and space surveillance technologies conference, Maui, HI 16–19 September 2008
2.
go back to reference Chen PC, Saha TT, Smith AM, Romeo R (1998) Progress in very lightweight optics using graphite fiber composite materials. Opt Eng 37:666–676CrossRef Chen PC, Saha TT, Smith AM, Romeo R (1998) Progress in very lightweight optics using graphite fiber composite materials. Opt Eng 37:666–676CrossRef
3.
go back to reference Matson LE, Mollenhauer DH (2004) Advanced materials and processes for large, lightweight, space-based mirrors. AMPTIAC Q 8:67–74 Matson LE, Mollenhauer DH (2004) Advanced materials and processes for large, lightweight, space-based mirrors. AMPTIAC Q 8:67–74
4.
go back to reference Enya K, Nakagawa T, Kaneda H, Onaka T, Ozaki T, Kume M (2007) Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes. Appl Opt 46:2049–2056CrossRef Enya K, Nakagawa T, Kaneda H, Onaka T, Ozaki T, Kume M (2007) Microscopic surface structure of C/SiC composite mirrors for space cryogenic telescopes. Appl Opt 46:2049–2056CrossRef
5.
go back to reference Gou S, Zhang G, Li L, Wang W, Zhao X (2009) Effect of materials and modelling on the design of the space based lightweight mirrors. Mater Des 30:9–14CrossRef Gou S, Zhang G, Li L, Wang W, Zhao X (2009) Effect of materials and modelling on the design of the space based lightweight mirrors. Mater Des 30:9–14CrossRef
6.
go back to reference Paquin RA (1999) Materials for optical systems. In: Ahmad A (ed) Optomechanical engineering handbook. CRC Press LLC, Boca Raton, pp 1–20 Paquin RA (1999) Materials for optical systems. In: Ahmad A (ed) Optomechanical engineering handbook. CRC Press LLC, Boca Raton, pp 1–20
7.
go back to reference Vukobratovich D (1999) Lightweight mirror design. In: Ahmad A (ed) Optomechanical engineering handbook. CRC Press LLC, Boca Raton, pp 1–40 Vukobratovich D (1999) Lightweight mirror design. In: Ahmad A (ed) Optomechanical engineering handbook. CRC Press LLC, Boca Raton, pp 1–40
8.
go back to reference Bely PY (2003) The design and construction of large optical telescopes. Springer, New YorkCrossRef Bely PY (2003) The design and construction of large optical telescopes. Springer, New YorkCrossRef
9.
go back to reference Ealey MA, Wellman JA (1996) Ultralightweight silicon carbide mirror design. In: Advanced materials for optical and precision structures. Denver, 11 November 1996, Proc SPIE vol 2857: 73–77 Ealey MA, Wellman JA (1996) Ultralightweight silicon carbide mirror design. In: Advanced materials for optical and precision structures. Denver, 11 November 1996, Proc SPIE vol 2857: 73–77
10.
go back to reference Rozelot JP, Bingham R, Walker DD (1992) Aluminium mirrors versus glass mirrors. In: Ulrich MH (ed) Progress in telescope and instrumentation technologies, ESO conference and workshop proceedings, Garching, 27–30 April 1992, pp 71–74 Rozelot JP, Bingham R, Walker DD (1992) Aluminium mirrors versus glass mirrors. In: Ulrich MH (ed) Progress in telescope and instrumentation technologies, ESO conference and workshop proceedings, Garching, 27–30 April 1992, pp 71–74
11.
go back to reference Hashiguchi DH, Heberling J, Campbell J, Morales A, Sayer A (2015) New decade of shaped beryllium blanks. In: Material technologies and applications to optics, structures, components, and sub-systems II, San Diego, 2 September 2015, Proc. SPIE vol 9574: 957403-1 Hashiguchi DH, Heberling J, Campbell J, Morales A, Sayer A (2015) New decade of shaped beryllium blanks. In: Material technologies and applications to optics, structures, components, and sub-systems II, San Diego, 2 September 2015, Proc. SPIE vol 9574: 957403-1
12.
go back to reference Westerhoff T, Werner T (2017) Zerodur expanding capabilities and capacity for future spaceborne and ground-based telescopes. In: Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems, San Diego, 08–11 August, 2017, Proc SPIE 10401: 104010R Westerhoff T, Werner T (2017) Zerodur expanding capabilities and capacity for future spaceborne and ground-based telescopes. In: Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems, San Diego, 08–11 August, 2017, Proc SPIE 10401: 104010R
13.
go back to reference Yamada K, Mohri M (1991) Properties and applications of silicon carbide ceramics. In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1: fundamentals and solid reaction. New York, Elsevier Applied Science, pp 13–44CrossRef Yamada K, Mohri M (1991) Properties and applications of silicon carbide ceramics. In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1: fundamentals and solid reaction. New York, Elsevier Applied Science, pp 13–44CrossRef
14.
go back to reference Tanaka H (2011) Silicon carbide powder and sintered materials. J Ceram Soc Jap 119:218–233CrossRef Tanaka H (2011) Silicon carbide powder and sintered materials. J Ceram Soc Jap 119:218–233CrossRef
15.
go back to reference Chen Y, Wang H, Tang J, Liu H, Chen S, Fan Q (2007) Fabrication of lightweight SiC space mirror. Key Eng Mater 336–338:1151–1154CrossRef Chen Y, Wang H, Tang J, Liu H, Chen S, Fan Q (2007) Fabrication of lightweight SiC space mirror. Key Eng Mater 336–338:1151–1154CrossRef
16.
go back to reference Goela JS, Pickering MA, Taylor RL (1994) Chemical vapour deposited β-SiC for optics applications. In: Chemical vapor deposition of refractory metals and ceramics III, Boston, 28–30 November, 1994, Mat Res Soc Symp Proc 363, pp 71–87 Goela JS, Pickering MA, Taylor RL (1994) Chemical vapour deposited β-SiC for optics applications. In: Chemical vapor deposition of refractory metals and ceramics III, Boston, 28–30 November, 1994, Mat Res Soc Symp Proc 363, pp 71–87
17.
go back to reference Zang Y, Zhang J, Han J, He X, Yao W (2004) Large-scale fabrication of lightweight Si/SiC composite for optical mirror. Mater Lett 58:1204–1208CrossRef Zang Y, Zhang J, Han J, He X, Yao W (2004) Large-scale fabrication of lightweight Si/SiC composite for optical mirror. Mater Lett 58:1204–1208CrossRef
18.
go back to reference Novi A, Basile G, Citterio O, Ghigo M, Caso A, Cattaneo G, Svelto GF (2001) Lightweight SiC foamed mirrors for space applications. In: Optomechanical design and engineering, San Diego, 5 November 2001, Proc SPIE 4444: 59–65 Novi A, Basile G, Citterio O, Ghigo M, Caso A, Cattaneo G, Svelto GF (2001) Lightweight SiC foamed mirrors for space applications. In: Optomechanical design and engineering, San Diego, 5 November 2001, Proc SPIE 4444: 59–65
19.
go back to reference Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRef Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, CambridgeCrossRef
20.
go back to reference Utsunomiya S, Kamiya T, Shimizu R (2013) Development of CFRP mirrors for space telescopes. In: Material technologies and applications to optics, structures, components, and sub-systems, San Diego, 30 September 2013, Proc SPIE 8837: 88370P Utsunomiya S, Kamiya T, Shimizu R (2013) Development of CFRP mirrors for space telescopes. In: Material technologies and applications to optics, structures, components, and sub-systems, San Diego, 30 September 2013, Proc SPIE 8837: 88370P
21.
go back to reference Wilcox CC, Santiago F, Jungwirth ME, Martinez T, Restaino SR, Bagwell B, Romeo R (2014) First light with a carbon fiber reinforced polymer 0.4-meter telescope. In: MEMS Adaptive Optics VIII, San Francisco, 02 February 2014, Proc SPIE 8978: 897805 Wilcox CC, Santiago F, Jungwirth ME, Martinez T, Restaino SR, Bagwell B, Romeo R (2014) First light with a carbon fiber reinforced polymer 0.4-meter telescope. In: MEMS Adaptive Optics VIII, San Francisco, 02 February 2014, Proc SPIE 8978: 897805
22.
go back to reference Steevesa J, Laslandesa M, Pellegrinoa S, Reddingb D, Bradfordb CS, Wallaceb JK, Barbeec T (2014) Design, fabrication and testing of active carbon shell mirrors for space telescope applications. In: Advances in optical and mechanical technologies for telescopes and instrumentation, Montréal, 28 July 2014, Proc SPIE 9151: 915105 Steevesa J, Laslandesa M, Pellegrinoa S, Reddingb D, Bradfordb CS, Wallaceb JK, Barbeec T (2014) Design, fabrication and testing of active carbon shell mirrors for space telescope applications. In: Advances in optical and mechanical technologies for telescopes and instrumentation, Montréal, 28 July 2014, Proc SPIE 9151: 915105
23.
go back to reference Safa F, Levallois F, Bougoin M, Castel D (1997) Silicon carbide technology for submillimetre space based telescopes. In: 48th international astronautical congress, Turin, 6–10 October 1997, pp 1–10 Safa F, Levallois F, Bougoin M, Castel D (1997) Silicon carbide technology for submillimetre space based telescopes. In: 48th international astronautical congress, Turin, 6–10 October 1997, pp 1–10
24.
go back to reference Lee HB, Suk JY, Bae JI (2015) Trade study of all lightweight primary mirror and metering structure for spaceborne telescopes. In: Krodel M, Robichaud JL, Goodman WA (eds) Material technologies and applications to optics, structures, components, and sub-systems II, San Diego, 10–13 August, 2015, Proc SPIE 9574: 95740D Lee HB, Suk JY, Bae JI (2015) Trade study of all lightweight primary mirror and metering structure for spaceborne telescopes. In: Krodel M, Robichaud JL, Goodman WA (eds) Material technologies and applications to optics, structures, components, and sub-systems II, San Diego, 10–13 August, 2015, Proc SPIE 9574: 95740D
25.
go back to reference Guo SW, Zhang GY, Wang WY, Zhao XZ (2006) Design and analysis of lightweight pointing mirror used in space camera. J Phys Conf Ser 48:620–624CrossRef Guo SW, Zhang GY, Wang WY, Zhao XZ (2006) Design and analysis of lightweight pointing mirror used in space camera. J Phys Conf Ser 48:620–624CrossRef
26.
go back to reference Greskovich C, Rosolowski JH (1976) Sintering of covalent solids. J Am Ceram Soc 59:336–343CrossRef Greskovich C, Rosolowski JH (1976) Sintering of covalent solids. J Am Ceram Soc 59:336–343CrossRef
27.
go back to reference Jana DC, Sundararajan G, Chattopadhyay K (2018) Effective activation energy for the solid-state sintering of silicon carbide ceramics. Metal Mater Trans A (Accepted) 49:5599CrossRef Jana DC, Sundararajan G, Chattopadhyay K (2018) Effective activation energy for the solid-state sintering of silicon carbide ceramics. Metal Mater Trans A (Accepted) 49:5599CrossRef
28.
go back to reference Prochazka S (1975) The role of boron and carbon in the sintering of silicon carbide. In: Popper P (ed) Special ceramics, 6th edn. British Ceramic Research Association, Stoke-on Trent, pp 171–182 Prochazka S (1975) The role of boron and carbon in the sintering of silicon carbide. In: Popper P (ed) Special ceramics, 6th edn. British Ceramic Research Association, Stoke-on Trent, pp 171–182
29.
go back to reference Gubernat A, Stobierski L (2003) Sintering of silicon carbide I. Effect of carbon. Ceram Int 29:287–292CrossRef Gubernat A, Stobierski L (2003) Sintering of silicon carbide I. Effect of carbon. Ceram Int 29:287–292CrossRef
30.
go back to reference Malinge A, Coupe A, Petitcorps Y, Pailler R (2012) Pressureless sintering of beta-silicon carbide nanoparticles. J Eur Ceram Soc 32:4393–4400CrossRef Malinge A, Coupe A, Petitcorps Y, Pailler R (2012) Pressureless sintering of beta-silicon carbide nanoparticles. J Eur Ceram Soc 32:4393–4400CrossRef
31.
go back to reference Jana DC, Barick P, Saha BP (2018) Effect of sintering temperature on density and mechanical properties of solid-state sintered silicon carbide ceramics and evaluation of failure origin. J Mater Eng Perform 27:2960–2966CrossRef Jana DC, Barick P, Saha BP (2018) Effect of sintering temperature on density and mechanical properties of solid-state sintered silicon carbide ceramics and evaluation of failure origin. J Mater Eng Perform 27:2960–2966CrossRef
32.
go back to reference Nesmelov DD, Perevislov SN (2015) Reaction sintered materials based on boron carbide and silicon carbide. Glas Ceram 71:313–319CrossRef Nesmelov DD, Perevislov SN (2015) Reaction sintered materials based on boron carbide and silicon carbide. Glas Ceram 71:313–319CrossRef
33.
go back to reference Kingery WD, Bowen HK, Uhlmann RD (1976) Introduction to ceramics, 2nd edn. Wiley, New York Kingery WD, Bowen HK, Uhlmann RD (1976) Introduction to ceramics, 2nd edn. Wiley, New York
34.
go back to reference Basu B, Tiwari D, Kundu D, Prasad R (2009) Is weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram Int 35:237–246CrossRef Basu B, Tiwari D, Kundu D, Prasad R (2009) Is weibull distribution the most appropriate statistical strength distribution for brittle materials? Ceram Int 35:237–246CrossRef
35.
go back to reference Green D (1998) An introduction to mechanical properties of ceramics, 1st edn. Cambridge University press, New YorkCrossRef Green D (1998) An introduction to mechanical properties of ceramics, 1st edn. Cambridge University press, New YorkCrossRef
36.
go back to reference Wereszczak AA, Kirkland TP, Strong KT Jr (2010) Size-scaling of tensile failure stress in a hot-pressed silicon carbide. Int J Appl Ceram Technol 7:635–642CrossRef Wereszczak AA, Kirkland TP, Strong KT Jr (2010) Size-scaling of tensile failure stress in a hot-pressed silicon carbide. Int J Appl Ceram Technol 7:635–642CrossRef
37.
go back to reference Pickering MA, Taylor RL, Keeley JT, Graves GA (1990) Chemically vapour deposited silicon carbide (SiC) for optical applications. Nucl Instrum Methods Phys Res Sect A 291:95–100CrossRef Pickering MA, Taylor RL, Keeley JT, Graves GA (1990) Chemically vapour deposited silicon carbide (SiC) for optical applications. Nucl Instrum Methods Phys Res Sect A 291:95–100CrossRef
38.
go back to reference Goela JS, Pickering MA, Taylor RL, Murry BW, Lompado A (1991) Properties of chemical-vapour-deposited silicon carbide for optics applications in severe environments. Appl Opt 30:3166–3175CrossRef Goela JS, Pickering MA, Taylor RL, Murry BW, Lompado A (1991) Properties of chemical-vapour-deposited silicon carbide for optics applications in severe environments. Appl Opt 30:3166–3175CrossRef
39.
go back to reference Haigis B, Pickering M (1993) CVD scaled up for commercial production of bulk SiC. Am Ceram Soc Bull 72:74–78 Haigis B, Pickering M (1993) CVD scaled up for commercial production of bulk SiC. Am Ceram Soc Bull 72:74–78
40.
go back to reference Rehn V, Choyke WJ (1980) SiC mirrors for synchrotron radiation. Nucl Inst Methods 177:173–178CrossRef Rehn V, Choyke WJ (1980) SiC mirrors for synchrotron radiation. Nucl Inst Methods 177:173–178CrossRef
41.
go back to reference Goela JS, Taylor RL (1991) Fabrication of lightweight ceramic mirrors by means of a chemical vapour deposition process. US patent 5,071596, 10 Dec 1991 Goela JS, Taylor RL (1991) Fabrication of lightweight ceramic mirrors by means of a chemical vapour deposition process. US patent 5,071596, 10 Dec 1991
42.
go back to reference Hirai T, Saski M (1991) Silicon carbide prepared by chemical vapour deposition. In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1: fundamentals and solid reaction. New York, Elsevier Applied Science, pp 77–97CrossRef Hirai T, Saski M (1991) Silicon carbide prepared by chemical vapour deposition. In: Somiya S, Inomata Y (eds) Silicon carbide ceramics-1: fundamentals and solid reaction. New York, Elsevier Applied Science, pp 77–97CrossRef
43.
go back to reference Schlichting J (1980) Chemical vapor deposition of silicon carbide. Powder Metall Int 12:141–147 Schlichting J (1980) Chemical vapor deposition of silicon carbide. Powder Metall Int 12:141–147
44.
go back to reference Wang H, Singh RN, Goela JS (1995) Effects of postdeposition treatments of the mechanical properties of a chemical-vapor-deposited silicon carbide. J Am Ceram Soc 78:2437–2442CrossRef Wang H, Singh RN, Goela JS (1995) Effects of postdeposition treatments of the mechanical properties of a chemical-vapor-deposited silicon carbide. J Am Ceram Soc 78:2437–2442CrossRef
45.
go back to reference Motojima S, Hasegawa M (1990) Chemical vapor deposition of SiC layers from a gas mixture of CH3SiCI3 + H2 (+ Ar), and effects of the linear velocity and Ar addition. J Vac Sci Technol A 8:3763–3768CrossRef Motojima S, Hasegawa M (1990) Chemical vapor deposition of SiC layers from a gas mixture of CH3SiCI3 + H2 (+ Ar), and effects of the linear velocity and Ar addition. J Vac Sci Technol A 8:3763–3768CrossRef
46.
go back to reference Huo Y, Chen Y (2008) Effect of deposition temperature on the growth characteristics of CVD SiC coatings. Key Eng Mater 368–372:846–848CrossRef Huo Y, Chen Y (2008) Effect of deposition temperature on the growth characteristics of CVD SiC coatings. Key Eng Mater 368–372:846–848CrossRef
47.
go back to reference Lu C, Cheng L, Zhao C, Zhang L, Xu Y (2009) Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen. Appl Surf Sci 255:7495–7499CrossRef Lu C, Cheng L, Zhao C, Zhang L, Xu Y (2009) Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen. Appl Surf Sci 255:7495–7499CrossRef
48.
go back to reference Schlichting J (1980) Chemical vapor deposition of silicon carbide. Powder Metall Int 12:196–200 Schlichting J (1980) Chemical vapor deposition of silicon carbide. Powder Metall Int 12:196–200
49.
go back to reference Chin J, Gantzel K, Hudson G (1977) The structure of chemical vapour deposited silicon carbide. Thin Solid Films 40:57–72CrossRef Chin J, Gantzel K, Hudson G (1977) The structure of chemical vapour deposited silicon carbide. Thin Solid Films 40:57–72CrossRef
50.
go back to reference Pickering MA, Goela JS, Burns LE (1994) Highly polishable highly thermally conductive silicon carbide. US Patent 5,374,412, 20 Dec 1994 Pickering MA, Goela JS, Burns LE (1994) Highly polishable highly thermally conductive silicon carbide. US Patent 5,374,412, 20 Dec 1994
Metadata
Title
Silicon Carbide-Based Lightweight Mirror Blanks for Space Optics Applications
Authors
Dulal Chandra Jana
Bhaskar Prasad Saha
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-16347-1_37

Premium Partners