Skip to main content
Top

2018 | OriginalPaper | Chapter

9. Silicon Micro-/Nanomachining and Applications

Authors : Hoang-Phuong Phan, Dzung Viet Dao, Nam-Trung Nguyen

Published in: Micro and Nanomanufacturing Volume II

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The invention of silicon (Si)-based diodes and especially the Si bipolar transistors by Shockley, Bardeen, and Brattain seven decades ago has triggered the era of fast-growing information and computer technologies. As a consequence, the development into microelectronic fabrication technologies has also been extensively investigated and progressed to reduce device size and to increase the integration, as well as to enhance their performance. The growing rate of the state-of-the-art microprocessors has reached above Moore’s law, which states that the number of transistors on a chip doubles roughly every 2 years. This achievement is largely attributed to the advanced micro- and nanofabrication processing [1].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Gad-el-Hak M (ed) (2001) The MEMS handbook. CRC Press, Boca RatonMATH Gad-el-Hak M (ed) (2001) The MEMS handbook. CRC Press, Boca RatonMATH
3.
go back to reference Mnyusiwalla A, Daar AS, Singer PA (2003) Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14(3):R9CrossRef Mnyusiwalla A, Daar AS, Singer PA (2003) Mind the gap’: science and ethics in nanotechnology. Nanotechnology 14(3):R9CrossRef
4.
go back to reference Shimura F (ed) (2012) Semiconductor silicon crystal technology. Elsevier, Amsterdam Shimura F (ed) (2012) Semiconductor silicon crystal technology. Elsevier, Amsterdam
5.
6.
go back to reference Ghibaudo G, Rafhay Q (2014) Electron and hole mobility in semiconductor devices. Wiley Encyclopedia of Electrical and Electronics Engineering Ghibaudo G, Rafhay Q (2014) Electron and hole mobility in semiconductor devices. Wiley Encyclopedia of Electrical and Electronics Engineering
7.
go back to reference Klaassen DBM (1992) A unified mobility model for device simulation -II. Temperature dependence of carrier mobility and lifetime. Solid-State Electron 35(7):961–967CrossRef Klaassen DBM (1992) A unified mobility model for device simulation -II. Temperature dependence of carrier mobility and lifetime. Solid-State Electron 35(7):961–967CrossRef
8.
go back to reference Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19(2):229–238CrossRef Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon? J Microelectromech Syst 19(2):229–238CrossRef
9.
go back to reference Shanks HR et al (1963) Thermal conductivity of silicon from 300 to 1400 K. Phys Rev 130(5):1743CrossRef Shanks HR et al (1963) Thermal conductivity of silicon from 300 to 1400 K. Phys Rev 130(5):1743CrossRef
10.
go back to reference Plummer JD (2009) Silicon VLSI technology: fundamentals, practice, and modeling. Pearson Education India, London Plummer JD (2009) Silicon VLSI technology: fundamentals, practice, and modeling. Pearson Education India, London
11.
go back to reference Maleville C et al (1997) Wafer bonding and H-implantation mechanisms involved in the Smart-cut technology. Mater Sci Eng B 46(1):14–19CrossRef Maleville C et al (1997) Wafer bonding and H-implantation mechanisms involved in the Smart-cut technology. Mater Sci Eng B 46(1):14–19CrossRef
12.
go back to reference Mark Noworolski J et al (1996) Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etch back. Sens Actuat A Phys 54(1):709–713CrossRef Mark Noworolski J et al (1996) Fabrication of SOI wafers with buried cavities using silicon fusion bonding and electrochemical etch back. Sens Actuat A Phys 54(1):709–713CrossRef
13.
go back to reference Sparks DR et al (1995) Method of micromachining an integrated sensor on the surface of a silicon wafer .US Patent No. 5, pp 427–975 Sparks DR et al (1995) Method of micromachining an integrated sensor on the surface of a silicon wafer .US Patent No. 5, pp 427–975
14.
go back to reference Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, HobokenCrossRef Mack C (2007) Fundamental principles of optical lithography: the science of microfabrication. Wiley, HobokenCrossRef
15.
go back to reference Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vet- tiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121CrossRef Lorenz H, Despont M, Fahrni N, LaBianca N, Renaud P, Vet- tiger P (1997) SU-8: a low-cost negative resist for MEMS. J Micromech Microeng 7(3):121CrossRef
16.
go back to reference Thong JTL, Choi WK, Chong CW (1997) TMAH etching of silicon and the interaction of etching parameters. Sens Actuat A Phys 63(3):243–249CrossRef Thong JTL, Choi WK, Chong CW (1997) TMAH etching of silicon and the interaction of etching parameters. Sens Actuat A Phys 63(3):243–249CrossRef
17.
go back to reference Tanaka H et al (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuat A Phys 114(2):516–520CrossRef Tanaka H et al (2004) Fast etching of silicon with a smooth surface in high temperature ranges near the boiling point of KOH solution. Sens Actuat A Phys 114(2):516–520CrossRef
18.
go back to reference Dutta S, Md I, Kumar P, Pal R, Datta P, Chatterjee R (2011) Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon (110). Microsyst Technol 17:1621–1628CrossRef Dutta S, Md I, Kumar P, Pal R, Datta P, Chatterjee R (2011) Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon (110). Microsyst Technol 17:1621–1628CrossRef
19.
go back to reference Nicolas M, Perney B, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt Express 14(2):847857 Nicolas M, Perney B, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering. Opt Express 14(2):847857
20.
go back to reference Klaassen EH et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuat A Phys 52(1):132–139CrossRef Klaassen EH et al (1996) Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures. Sens Actuat A Phys 52(1):132–139CrossRef
21.
go back to reference Manos DM, Flamm DL (eds) (1989) Plasma etching: an introduction. Elsevier, Amsterdam Manos DM, Flamm DL (eds) (1989) Plasma etching: an introduction. Elsevier, Amsterdam
22.
go back to reference Jansen H et al (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6(1):14CrossRef Jansen H et al (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6(1):14CrossRef
23.
go back to reference Ayazi F, Najafi K (2000) High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology. J Microelectromech Syst 9(3):288–294CrossRef Ayazi F, Najafi K (2000) High aspect-ratio combined poly and single-crystal silicon (HARPSS) MEMS technology. J Microelectromech Syst 9(3):288–294CrossRef
24.
go back to reference Usenko AY (2002) Process for lift-off of a layer from a substrate. US Patent No. 6352909 Usenko AY (2002) Process for lift-off of a layer from a substrate. US Patent No. 6352909
25.
go back to reference Yazdi N, Khalil N (2000) An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J Microelectromech Syst 9(4):544–550CrossRef Yazdi N, Khalil N (2000) An all-silicon single-wafer micro-g accelerometer with a combined surface and bulk micromachining process. J Microelectromech Syst 9(4):544–550CrossRef
26.
go back to reference Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6(6):1809–1813CrossRef Howe RT (1988) Surface micromachining for microsensors and microactuators. J Vac Sci Technol B 6(6):1809–1813CrossRef
27.
go back to reference Smith HI, Flanders DC (1980) X-ray lithography—a review and assessment of future applications. J Vac Sci Technol 171:533–535CrossRef Smith HI, Flanders DC (1980) X-ray lithography—a review and assessment of future applications. J Vac Sci Technol 171:533–535CrossRef
28.
go back to reference Phan H-P et al (2016) Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci Rep 6:28499CrossRef Phan H-P et al (2016) Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci Rep 6:28499CrossRef
29.
go back to reference Neukermans AP et al (1986) Silicon carbide film for X-ray masks and vacuum windows. US Patent No. 4608326 Neukermans AP et al (1986) Silicon carbide film for X-ray masks and vacuum windows. US Patent No. 4608326
30.
go back to reference Hruby J (2001) LIGA technologies and applications. MRS Bull 26(4):337–340CrossRef Hruby J (2001) LIGA technologies and applications. MRS Bull 26(4):337–340CrossRef
31.
go back to reference Tseng AA et al (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manufact 26(2):141–149CrossRef Tseng AA et al (2003) Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manufact 26(2):141–149CrossRef
32.
go back to reference Tseng AA (2005) Recent developments in nanofabrication using focused ion beams. Small 1(10):924–939CrossRef Tseng AA (2005) Recent developments in nanofabrication using focused ion beams. Small 1(10):924–939CrossRef
33.
go back to reference Phan H-P et al (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5(100):82121–82126CrossRef Phan H-P et al (2015) Piezoresistive effect of p-type silicon nanowires fabricated by a top-down process using FIB implantation and wet etching. RSC Adv 5(100):82121–82126CrossRef
34.
go back to reference Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23(3):877–894CrossRef Tseng AA, Notargiacomo A, Chen TP (2005) Nanofabrication by scanning probe microscope lithography: a review. J Vac Sci Technol B 23(3):877–894CrossRef
35.
go back to reference McCord MA, Pease RFW (1986) Lithography with the scanning tunneling microscope. J Vac Sci Technol B41:86–88CrossRef McCord MA, Pease RFW (1986) Lithography with the scanning tunneling microscope. J Vac Sci Technol B41:86–88CrossRef
36.
go back to reference Hu S et al (1998) Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J Vac Sci Technol B 16(5):2822–2824CrossRef Hu S et al (1998) Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J Vac Sci Technol B 16(5):2822–2824CrossRef
37.
go back to reference Terris BD, Mamin HJ, Best ME, Logan JA, Rugar D, Rishton SA (1996) Nanoscale replication for scanning probe data storage. Appl Phys Lett 69:4262CrossRef Terris BD, Mamin HJ, Best ME, Logan JA, Rugar D, Rishton SA (1996) Nanoscale replication for scanning probe data storage. Appl Phys Lett 69:4262CrossRef
38.
go back to reference Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Durig U et al (2003) Millipede—a MEMS-based scanning-probe datastorage system. IEEE Trans Magn 39(2):938–945CrossRef Eleftheriou E, Antonakopoulos T, Binnig GK, Cherubini G, Despont M, Dholakia A, Durig U et al (2003) Millipede—a MEMS-based scanning-probe datastorage system. IEEE Trans Magn 39(2):938–945CrossRef
39.
go back to reference Phan H-P et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24(6):1663–1677CrossRef Phan H-P et al (2015) The piezoresistive effect of SiC for MEMS sensors at high temperatures: a review. J Microelectromech Syst 24(6):1663–1677CrossRef
40.
go back to reference Bell DJ et al (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153CrossRef Bell DJ et al (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153CrossRef
41.
go back to reference Minh-Dung N et al (2013) A sensitive liquid-cantilever diaphragm for pressure sensor. In: 2013 I.E. 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE Minh-Dung N et al (2013) A sensitive liquid-cantilever diaphragm for pressure sensor. In: 2013 I.E. 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE
42.
go back to reference Minh-Dung N et al (2013) A hydrophone using liquid to bridge the gap of a piezo-resistive cantilever. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII). IEEE Minh-Dung N et al (2013) A hydrophone using liquid to bridge the gap of a piezo-resistive cantilever. In: 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII). IEEE
43.
go back to reference Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6(5):530CrossRef Eaton WP, Smith JH (1997) Micromachined pressure sensors: review and recent developments. Smart Mater Struct 6(5):530CrossRef
44.
go back to reference Laghrouche M, Adane A, Boussey J, Ameur S, Meunier D, Tardu S (2005) A miniature silicon hot wire sensor for automatic wind speed measurements. Renew Energy 30(12):1881–1896CrossRef Laghrouche M, Adane A, Boussey J, Ameur S, Meunier D, Tardu S (2005) A miniature silicon hot wire sensor for automatic wind speed measurements. Renew Energy 30(12):1881–1896CrossRef
45.
go back to reference Kuo JT, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3(3):550–573CrossRef Kuo JT, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3(3):550–573CrossRef
46.
go back to reference Dinh T et al (2015) Graphite on paper as material for sensitive thermoresistive sensors. J Mater Chem C 3(34):8776–8779CrossRef Dinh T et al (2015) Graphite on paper as material for sensitive thermoresistive sensors. J Mater Chem C 3(34):8776–8779CrossRef
47.
go back to reference Birner A et al (2001) Silicon-based photonic crystals. Adv Mater 13(6):377388CrossRef Birner A et al (2001) Silicon-based photonic crystals. Adv Mater 13(6):377388CrossRef
48.
go back to reference Bui TT, Dao DV et al (2011) Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity. Opt Express 19(9):8821–8829CrossRef Bui TT, Dao DV et al (2011) Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity. Opt Express 19(9):8821–8829CrossRef
49.
go back to reference Dao DV et al (2010) Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1(1):013001CrossRef Dao DV et al (2010) Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology. Adv Nat Sci Nanosci Nanotechnol 1(1):013001CrossRef
50.
go back to reference Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64CrossRef Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64CrossRef
51.
go back to reference Feng XL et al (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7(7):1953–1959CrossRef Feng XL et al (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7(7):1953–1959CrossRef
52.
go back to reference Cleland AN, Roukes ML (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 6918:2653–2655CrossRef Cleland AN, Roukes ML (1996) Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl Phys Lett 6918:2653–2655CrossRef
Metadata
Title
Silicon Micro-/Nanomachining and Applications
Authors
Hoang-Phuong Phan
Dzung Viet Dao
Nam-Trung Nguyen
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-67132-1_9