Skip to main content
Top
Published in: Journal of Materials Science 7/2017

02-11-2016 | Batteries and Supercapacitors

Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries

Authors: Yiyong Zhang, Kun Li, Panying Ji, Dingqiong Chen, Jing Zeng, Yazhou Sun, Peng Zhang, Jinbao Zhao

Published in: Journal of Materials Science | Issue 7/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Silicon-multi-walled carbon nanotubes-carbon (Si-MWNTS-C) microspheres have been fabricated through the ball milling and spray drying method followed by the carbonization process. The as-prepared composite microspheres are confirmed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The specific capacity of the as-prepared microspherical composite as anode in lithium-ion batteries (LIBs) is about 1100 mAh g−1 at the current density of 0.2 A g−1 (based on the total weight of the composite). At the high current density of 6 A g−1, the Si-MWNTS-C microspheres exhibit reversible capacity of 415 mAh g−1. Through the ex situ SEM, we observed that the Si-MWNTS-C microspherical composite particles have no extinct change on the electrode surface except for the growth of the spherical particles after 100 cycles. The excellent electrochemical performance is ascribed to the synergistic effect between Si nanoparticles (Si NPs) and MWNTS-C microspheres. The as-prepared Si-MWNTS-C microspheres can effectively accommodate large volume changes and provide a 3D conductive network during the lithiation–delithiation processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef Arico AS, Bruce P, Scrosati B, Tarascon JM, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRef
2.
go back to reference Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRef
3.
go back to reference Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121CrossRef Yoo HD, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121CrossRef
5.
go back to reference Yang X, Li C, Zhang G, Yang C (2015) Polystyrene-derived carbon with hierarchical macro-meso-microporous structure for high-rate lithium-ion batteries application. J Mater Sci 50:6649–6655. doi:10.1007/s10853-015-9214-7 CrossRef Yang X, Li C, Zhang G, Yang C (2015) Polystyrene-derived carbon with hierarchical macro-meso-microporous structure for high-rate lithium-ion batteries application. J Mater Sci 50:6649–6655. doi:10.​1007/​s10853-015-9214-7 CrossRef
6.
go back to reference Etiemble A, Besnard N, Bonnin A, Adrien J, Douillard T, Tran-Van P, Gautier L, Badot JC, Maire E, Lestriez B (2016) Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium-ion batteries. J Mater Sci. doi:10.1007/s10853-016-0374-x Etiemble A, Besnard N, Bonnin A, Adrien J, Douillard T, Tran-Van P, Gautier L, Badot JC, Maire E, Lestriez B (2016) Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium-ion batteries. J Mater Sci. doi:10.​1007/​s10853-016-0374-x
7.
go back to reference Song YC, Soh AK, Zhang JQ (2016) On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size. J Mater Sci 51:9902–9911. doi:10.1007/s10853-016-0223-y CrossRef Song YC, Soh AK, Zhang JQ (2016) On stress-induced voltage hysteresis in lithium ion batteries: impacts of material property, charge rate and particle size. J Mater Sci 51:9902–9911. doi:10.​1007/​s10853-016-0223-y CrossRef
8.
go back to reference Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367CrossRef
9.
go back to reference Szczech JR, Jin S (2011) nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRef Szczech JR, Jin S (2011) nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72CrossRef
10.
go back to reference Chen Y, Nie M, Lucht BL, Saha A, Guduru PR, Bose A (2014) High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly. ACS Appl Mater Interfaces 6:4678–4683CrossRef Chen Y, Nie M, Lucht BL, Saha A, Guduru PR, Bose A (2014) High capacity, stable silicon/carbon anodes for lithium-ion batteries prepared using emulsion-templated directed assembly. ACS Appl Mater Interfaces 6:4678–4683CrossRef
11.
go back to reference Yang Y, Cheng DQ, Liu B, Zhao JB (2015) Binder-free Si nanoparticle electrode with 3-D porous structure prepared by electrophoretic deposition for lithium-ion batteries. ACS Appl Mater Interfaces 7:7497–7504CrossRef Yang Y, Cheng DQ, Liu B, Zhao JB (2015) Binder-free Si nanoparticle electrode with 3-D porous structure prepared by electrophoretic deposition for lithium-ion batteries. ACS Appl Mater Interfaces 7:7497–7504CrossRef
12.
go back to reference Yu J, Yang J, Feng X, Jia H, Wang J, Lu W (2014) Uniform carbon coating on silicon nanoparticles by dynamic cvd process for electrochemical lithium storage. Ind Eng Chem Res 53:12697–12704CrossRef Yu J, Yang J, Feng X, Jia H, Wang J, Lu W (2014) Uniform carbon coating on silicon nanoparticles by dynamic cvd process for electrochemical lithium storage. Ind Eng Chem Res 53:12697–12704CrossRef
13.
go back to reference Vrankovic D, Reinold LM, Riedel R, Graczyk-Zajac M (2016) Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes. J Mater Sci 51:6051–6061CrossRef Vrankovic D, Reinold LM, Riedel R, Graczyk-Zajac M (2016) Void-shell silicon/carbon/SiCN nanostructures: toward stable silicon-based electrodes. J Mater Sci 51:6051–6061CrossRef
14.
go back to reference Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93CrossRef Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7:A93CrossRef
15.
go back to reference Cui LF, Ruffo R, Chan CK, Peng HL, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495CrossRef Cui LF, Ruffo R, Chan CK, Peng HL, Cui Y (2009) Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495CrossRef
16.
go back to reference Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103CrossRef Obrovac MN, Krause LJ (2007) Reversible cycling of crystalline silicon powder. J Electrochem Soc 154:A103CrossRef
17.
go back to reference Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838CrossRef Hatchard TD, Dahn JR (2004) In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151:A838CrossRef
18.
go back to reference Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531CrossRef Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6:1522–1531CrossRef
19.
go back to reference Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807CrossRef Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807CrossRef
20.
go back to reference Jeong HM, Lee SY, Shin WH, Kwon JH, Shakoor A, Hwang TH, Kim SY, Kong BS, Seo JS, Lee YM, Kang JK, Choi JW (2012) Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes. RSC Adv. 2:4311–4317CrossRef Jeong HM, Lee SY, Shin WH, Kwon JH, Shakoor A, Hwang TH, Kim SY, Kong BS, Seo JS, Lee YM, Kang JK, Choi JW (2012) Silicon@porous nitrogen-doped carbon spheres through a bottom-up approach are highly robust lithium-ion battery anodes. RSC Adv. 2:4311–4317CrossRef
21.
go back to reference McDowell MT, Lee SW, Ryu I, Wu H, Nix WD, Choi JW, Cui Y (2011) Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett 11:4018–4025CrossRef McDowell MT, Lee SW, Ryu I, Wu H, Nix WD, Choi JW, Cui Y (2011) Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett 11:4018–4025CrossRef
22.
go back to reference Zhou X, Yin YX, Cao AM, Wan LJ, Guo YG (2012) Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl Mater Interfaces 4:2824–2828CrossRef Zhou X, Yin YX, Cao AM, Wan LJ, Guo YG (2012) Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl Mater Interfaces 4:2824–2828CrossRef
23.
go back to reference Iwamura S, Nishihara H, Kyotani T (2012) Effect of buffer size around nanosilicon anode particles for lithium-ion batteries. J Phys Chem C 116:6004–6011CrossRef Iwamura S, Nishihara H, Kyotani T (2012) Effect of buffer size around nanosilicon anode particles for lithium-ion batteries. J Phys Chem C 116:6004–6011CrossRef
24.
go back to reference Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR (2012) Fabrication of Si Core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode. J Power Sources 206:267–273CrossRef Lee BS, Son SB, Park KM, Seo JH, Lee SH, Choi IS, Oh KH, Yu WR (2012) Fabrication of Si Core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode. J Power Sources 206:267–273CrossRef
25.
go back to reference Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429CrossRef Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429CrossRef
26.
go back to reference Sun W, Hu RZ, Liu H, Zeng MQ, Yang LC, Wang HH, Zhu M (2014) Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J Power Sources 268:610–618CrossRef Sun W, Hu RZ, Liu H, Zeng MQ, Yang LC, Wang HH, Zhu M (2014) Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J Power Sources 268:610–618CrossRef
27.
go back to reference Shao D, Tang DP, Yang JW, Li YW, Zhang LZ (2015) Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J Power Sources 297:344–350CrossRef Shao D, Tang DP, Yang JW, Li YW, Zhang LZ (2015) Nano-structured composite of Si/(S-doped-carbon nanowire network) as anode material for lithium-ion batteries. J Power Sources 297:344–350CrossRef
28.
go back to reference Cui LF, Hu L, Wu H, Choi JW, Cui Y (2011) Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J Electrochem Soc 158:A592CrossRef Cui LF, Hu L, Wu H, Choi JW, Cui Y (2011) Inorganic glue enabling high performance of silicon particles as lithium ion battery anode. J Electrochem Soc 158:A592CrossRef
29.
go back to reference Hong I, Scrosati B, Croce F (2013) Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’reduction process. Solid State Ionics 232:24–28CrossRef Hong I, Scrosati B, Croce F (2013) Mesoporous, Si/C composite anode for Li battery obtained by ‘magnesium-thermal’reduction process. Solid State Ionics 232:24–28CrossRef
30.
go back to reference Feng X, Yang J, Lu Q, Wang J, Nuli Y (2013) Facile approach to SiO(x)/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys Chem Chem Phys 15:14420–14426CrossRef Feng X, Yang J, Lu Q, Wang J, Nuli Y (2013) Facile approach to SiO(x)/Si/C composite anode material from bulk SiO for lithium ion batteries. Phys Chem Chem Phys 15:14420–14426CrossRef
31.
go back to reference Xu Y, Zhu Y, Wang C (2014) Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J Mater Chem A 2:9751CrossRef Xu Y, Zhu Y, Wang C (2014) Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J Mater Chem A 2:9751CrossRef
32.
go back to reference Epur R, Datta MK, Kumta PN (2012) Nanoscale engineered electrochemically active silicon-CNT heterostructures-novel anodes for Li-ion application. Electrochim Acta 85:680–684CrossRef Epur R, Datta MK, Kumta PN (2012) Nanoscale engineered electrochemically active silicon-CNT heterostructures-novel anodes for Li-ion application. Electrochim Acta 85:680–684CrossRef
33.
go back to reference Deng J, Ji H, Yan C, Zhang J, Si W, Baunack S, Oswald S, Mei Y, Schmidt OG (2013) Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew Chem 52:2326–2330CrossRef Deng J, Ji H, Yan C, Zhang J, Si W, Baunack S, Oswald S, Mei Y, Schmidt OG (2013) Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance. Angew Chem 52:2326–2330CrossRef
34.
go back to reference Fang S, Shen G, Xu G, Nie P, Wang J, Dou H, Zhang X (2013) Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. Acs Appl Mater Interfaces 6:6497–6503CrossRef Fang S, Shen G, Xu G, Nie P, Wang J, Dou H, Zhang X (2013) Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries. Acs Appl Mater Interfaces 6:6497–6503CrossRef
35.
go back to reference Ren Y, Wei H, Yang B, Wang J, Ding J (2014) “Double-Sandwich-Like”CuS@reduced graphene oxide as an anode in lithium ion batteries with enhanced electrochemical performance. Electrochim Acta 145:193–200CrossRef Ren Y, Wei H, Yang B, Wang J, Ding J (2014) “Double-Sandwich-Like”CuS@reduced graphene oxide as an anode in lithium ion batteries with enhanced electrochemical performance. Electrochim Acta 145:193–200CrossRef
36.
go back to reference Pan Q, Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Adv 3:3899CrossRef Pan Q, Xie J, Liu S, Cao G, Zhu T, Zhao X (2013) Facile one-pot synthesis of ultrathin NiS nanosheets anchored on graphene and the improved electrochemical Li-storage properties. RSC Adv 3:3899CrossRef
Metadata
Title
Silicon-multi-walled carbon nanotubes-carbon microspherical composite as high-performance anode for lithium-ion batteries
Authors
Yiyong Zhang
Kun Li
Panying Ji
Dingqiong Chen
Jing Zeng
Yazhou Sun
Peng Zhang
Jinbao Zhao
Publication date
02-11-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 7/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0503-6

Other articles of this Issue 7/2017

Journal of Materials Science 7/2017 Go to the issue

Premium Partners