Skip to main content
Top
Published in: Numerical Algorithms 4/2020

22-01-2020 | Original Paper

Simple stopping criteria for the LSQR method applied to discrete ill-posed problems

Authors: Lothar Reichel, Hassane Sadok, Wei-Hong Zhang

Published in: Numerical Algorithms | Issue 4/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The LSQR iterative method is one of the most popular numerical schemes for computing an approximate solution of large linear discrete ill-posed problems with an error-contaminated right-hand side, which represents available data. It is important to terminate the iterations after a suitable number of steps, because too many steps yield an approximate solution that suffers from a large propagated error due to the error in the data, and too few iterations give an approximate solution that may lack many details that can be of interest. When the error in the right-hand side is white Gaussian and a tight bound on its variance is known, the discrepancy principle typically furnishes a suitable termination criterion for the LSQR iterations. However, in many applications in science and engineering that give rise to large linear discrete ill-posed problems, the variance of the error is not known. This has spurred the development of a variety of stopping rules for assessing when to terminate the iterations in this situation. The present paper proposes new simple stopping rules that are based on comparing the residual errors associated with iterates generated by the LSQR and Craig iterative methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Baart, M.L.: The use of auto-correlation for pseudorank determination in noisy ill-conditioned linear least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)MathSciNetCrossRef Baart, M.L.: The use of auto-correlation for pseudorank determination in noisy ill-conditioned linear least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)MathSciNetCrossRef
2.
go back to reference Bauer, F., Kindermann, S.: The quasi-optimality criterion for classical inverse problems. Inverse Problems 24, 035002 (2008). (20pp)MathSciNetCrossRef Bauer, F., Kindermann, S.: The quasi-optimality criterion for classical inverse problems. Inverse Problems 24, 035002 (2008). (20pp)MathSciNetCrossRef
3.
go back to reference Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comput. Simulation 81, 1795–1841 (2011)MathSciNetCrossRef Bauer, F., Lukas, M.A.: Comparing parameter choice methods for regularization of ill-posed problems. Math. Comput. Simulation 81, 1795–1841 (2011)MathSciNetCrossRef
4.
go back to reference Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H., Wang, Z.: Vector extrapolation applied to truncated singular value decomposition and truncated iteration. J. Eng. Math. 93, 99–112 (2015)MathSciNetCrossRef Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H., Wang, Z.: Vector extrapolation applied to truncated singular value decomposition and truncated iteration. J. Eng. Math. 93, 99–112 (2015)MathSciNetCrossRef
5.
go back to reference Brezinski, C., Redivo Zaglia, M., Rodriguez, G., Seatzu, S.: Extrapolation techniques for ill-conditioned linear systems. Numer. Math. 81, 1–29 (1998)MathSciNetCrossRef Brezinski, C., Redivo Zaglia, M., Rodriguez, G., Seatzu, S.: Extrapolation techniques for ill-conditioned linear systems. Numer. Math. 81, 1–29 (1998)MathSciNetCrossRef
6.
go back to reference Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49, 85–104 (2008)MathSciNetCrossRef Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms 49, 85–104 (2008)MathSciNetCrossRef
7.
go back to reference Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 51, 61–76 (2009)MathSciNetCrossRef Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares problems. Numer. Algorithms 51, 61–76 (2009)MathSciNetCrossRef
8.
go back to reference Fenu, C., Reichel, L., Rodriguez, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. BIT Numer. Math. 57, 1019–1039 (2017)MathSciNetCrossRef Fenu, C., Reichel, L., Rodriguez, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. BIT Numer. Math. 57, 1019–1039 (2017)MathSciNetCrossRef
9.
go back to reference Fox, L., Goodwin, E.T.: The numerical solution of non-singular linear integral equations. Philos. Trans. Roy. Soc. London. Ser. A. 245, 501–534 (1953)MathSciNetCrossRef Fox, L., Goodwin, E.T.: The numerical solution of non-singular linear integral equations. Philos. Trans. Roy. Soc. London. Ser. A. 245, 501–534 (1953)MathSciNetCrossRef
10.
go back to reference Hanke, M.: On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer. Math. 41, 1008–1018 (2001)MathSciNetCrossRef Hanke, M.: On Lanczos based methods for the regularization of discrete ill-posed problems. BIT Numer. Math. 41, 1008–1018 (2001)MathSciNetCrossRef
11.
12.
go back to reference Hansen, P.C.: Rank-deficient and discrete ill-Posed problems: Numerical aspects of linear inversion. SIAM, Philadelphia (1998)CrossRef Hansen, P.C.: Rank-deficient and discrete ill-Posed problems: Numerical aspects of linear inversion. SIAM, Philadelphia (1998)CrossRef
14.
go back to reference Hansen, P.C.: Discrete inverse problems: insight and algorithms. SIAM, Philadelphia (2010)CrossRef Hansen, P.C.: Discrete inverse problems: insight and algorithms. SIAM, Philadelphia (2010)CrossRef
15.
go back to reference Hochstenbach, M.E., Reichel, L., Rodriguez, G.: Regularization parameter determination for discrete ill-posed problems. J. Comput. Appl. Math. 273, 132–149 (2015)MathSciNetCrossRef Hochstenbach, M.E., Reichel, L., Rodriguez, G.: Regularization parameter determination for discrete ill-posed problems. J. Comput. Appl. Math. 273, 132–149 (2015)MathSciNetCrossRef
16.
go back to reference Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)MathSciNetMATH Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)MathSciNetMATH
17.
go back to reference Meurant, G.: Computer solution of large linear systems. Elsevier, Amsterdam (1999)MATH Meurant, G.: Computer solution of large linear systems. Elsevier, Amsterdam (1999)MATH
18.
go back to reference Meurant, G.: The Lanczos and conjugate gradient algorithms. SIAM, Philadelphia (2006)CrossRef Meurant, G.: The Lanczos and conjugate gradient algorithms. SIAM, Philadelphia (2006)CrossRef
19.
go back to reference Morigi, S., Reichel, L., Sgallari, F., Zama, F.: Iterative methods for ill-posed problems and semiconvergent sequences. J. Comput. Appl. Math. 193, 157–167 (2006)MathSciNetCrossRef Morigi, S., Reichel, L., Sgallari, F., Zama, F.: Iterative methods for ill-posed problems and semiconvergent sequences. J. Comput. Appl. Math. 193, 157–167 (2006)MathSciNetCrossRef
20.
go back to reference Paige, C.C.: Bidiagonalization of matrices and solutions of linear equations. SIAM J. Numer. Anal. 11, 197–209 (1974)MathSciNetCrossRef Paige, C.C.: Bidiagonalization of matrices and solutions of linear equations. SIAM J. Numer. Anal. 11, 197–209 (1974)MathSciNetCrossRef
21.
go back to reference Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Soft. 8, 43–71 (1982)MathSciNetCrossRef Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Soft. 8, 43–71 (1982)MathSciNetCrossRef
22.
go back to reference Park, Y., Reichel, L., Rodriguez, G., Yu, X.: Parameter determination for Tikhonov regularization problems in general form. J. Comput. Appl. Math. 343, 12–25 (2018)MathSciNetCrossRef Park, Y., Reichel, L., Rodriguez, G., Yu, X.: Parameter determination for Tikhonov regularization problems in general form. J. Comput. Appl. Math. 343, 12–25 (2018)MathSciNetCrossRef
23.
go back to reference Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84–97 (1962)MathSciNetCrossRef Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. Assoc. Comput. Mach. 9, 84–97 (1962)MathSciNetCrossRef
24.
go back to reference Regińska, T.: A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput. 17, 740–749 (1996)MathSciNetCrossRef Regińska, T.: A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput. 17, 740–749 (1996)MathSciNetCrossRef
25.
go back to reference Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)MathSciNetCrossRef Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)MathSciNetCrossRef
26.
27.
28.
go back to reference Shaw, C.B. Jr.: Improvement of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)MathSciNetCrossRef Shaw, C.B. Jr.: Improvement of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)MathSciNetCrossRef
29.
go back to reference Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford University Press, New York (1965)MATH Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford University Press, New York (1965)MATH
Metadata
Title
Simple stopping criteria for the LSQR method applied to discrete ill-posed problems
Authors
Lothar Reichel
Hassane Sadok
Wei-Hong Zhang
Publication date
22-01-2020
Publisher
Springer US
Published in
Numerical Algorithms / Issue 4/2020
Print ISSN: 1017-1398
Electronic ISSN: 1572-9265
DOI
https://doi.org/10.1007/s11075-019-00852-1

Other articles of this Issue 4/2020

Numerical Algorithms 4/2020 Go to the issue

Premium Partner