Skip to main content
Top

2024 | OriginalPaper | Chapter

Simple Stratified Sampling for Simulating Multi-dimensional Markov Chains

Authors : Rami El Haddad, Christian Lécot, Pierre L’Ecuyer

Published in: Monte Carlo and Quasi-Monte Carlo Methods

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Monte Carlo (MC) is widely used for the simulation of discrete time Markov chains. We consider the case of a d-dimensional continuous state space and we restrict ourselves to chains where the d components are advanced independently from each other, with d random numbers used at each step. We simulate N copies of the chain in parallel, and we replace pseudorandom numbers on \(I^d := (0,1)^d\) with stratified random points over \(I^{2d}\): for each point, the first d components are used to select a state and the last d components are used to advance the chain by one step. We use a simple stratification technique: let p be an integer, then for \(N=p^{2d}\) samples, the unit hypercube is dissected into N hypercubes of measure 1/N and there is one sample in each of them. The strategy outperforms classical MC if a well-chosen multivariate sort of the states is employed to order the chains at each step. We prove that the variance of the stratified sampling estimator is bounded by \(\mathcal {O}(N^{-(1+1/(2d))})\), while it is \(\mathcal {O}(N^{-1})\) for MC. In numerical experiments, we observe empirical rates that satisfy the bounds. We also compare with the Array-RQMC method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ben Abdallah, A., L’Ecuyer, P., Puchhammer, F.: Array-RQMC for option pricing under stochastic volatility models. In: Mustafee, N., Bae, K.-H.G., Lazarova-Molnar, S., Rabe, M., Szabo, C., Haas, P., Son, Y.-J. (eds.) Proceedings of the 2019 Winter Simulation Conference, pp. 440–451. IEEE Press (2019) Ben Abdallah, A., L’Ecuyer, P., Puchhammer, F.: Array-RQMC for option pricing under stochastic volatility models. In: Mustafee, N., Bae, K.-H.G., Lazarova-Molnar, S., Rabe, M., Szabo, C., Haas, P., Son, Y.-J. (eds.) Proceedings of the 2019 Winter Simulation Conference, pp. 440–451. IEEE Press (2019)
2.
go back to reference Cheng, R.C.H., Davenport, T.: The problem of dimensionality in stratified sampling. Manag. Sci. 35, 1278–1296 (1989)MathSciNetCrossRef Cheng, R.C.H., Davenport, T.: The problem of dimensionality in stratified sampling. Manag. Sci. 35, 1278–1296 (1989)MathSciNetCrossRef
3.
go back to reference El Haddad, R., Fakhreddine, R., Lécot, C.: Stratified Monte Carlo integration. In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo Methods and Applications, pp. 105–113. De Gruyter, Berlin (2013) El Haddad, R., Fakhreddine, R., Lécot, C.: Stratified Monte Carlo integration. In: Sabelfeld, K.K., Dimov, I. (eds.) Monte Carlo Methods and Applications, pp. 105–113. De Gruyter, Berlin (2013)
4.
go back to reference El Haddad, R., Fakhereddine, R., Lécot, C., Venkiteswaran, G.: Extended Latin hypercube sampling for integration and simulation. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 317–330. Springer, Berlin (2013) El Haddad, R., Fakhereddine, R., Lécot, C., Venkiteswaran, G.: Extended Latin hypercube sampling for integration and simulation. In: Dick, J., Kuo, F.Y., Peters, G.W., Sloan, I.H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2012, pp. 317–330. Springer, Berlin (2013)
5.
go back to reference El Haddad, R., El Maalouf, J., Lécot, C., L’Ecuyer, P.: Sudoku Latin square sampling for Markov chain simulation. In: Tuffin, B., L’Ecuyer, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, pp. 207–230. Springer, Cham (2020) El Haddad, R., El Maalouf, J., Lécot, C., L’Ecuyer, P.: Sudoku Latin square sampling for Markov chain simulation. In: Tuffin, B., L’Ecuyer, P. (eds.) Monte Carlo and Quasi-Monte Carlo Methods, pp. 207–230. Springer, Cham (2020)
6.
go back to reference El Haddad, R., El Maalouf, J., Fakhereddine, R., Lécot, C.: Simulation of Markov chains with continuous state space by using simple stratified and Sudoku Latin square sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation, pp. 239–260. Springer, Cham (2022) El Haddad, R., El Maalouf, J., Fakhereddine, R., Lécot, C.: Simulation of Markov chains with continuous state space by using simple stratified and Sudoku Latin square sampling. In: Botev, Z., Keller, A., Lemieux, C., Tuffin, B. (eds.) Advances in Modeling and Simulation, pp. 239–260. Springer, Cham (2022)
7.
go back to reference Ghoniem, A.F., Sherman, F.S.: Grid-free simulation of diffusion using random walk methods. J. Comput. Phys. 61, 1–37 (1985) Ghoniem, A.F., Sherman, F.S.: Grid-free simulation of diffusion using random walk methods. J. Comput. Phys. 61, 1–37 (1985)
8.
go back to reference Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004) Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, New York (2004)
10.
go back to reference Lécot, C., Coulibaly, I.: A Quasi-Monte Carlo scheme using nets for a linear Boltzmann equation. SIAM J. Numer. Anal. 35, 51–70 (1998)MathSciNetCrossRef Lécot, C., Coulibaly, I.: A Quasi-Monte Carlo scheme using nets for a linear Boltzmann equation. SIAM J. Numer. Anal. 35, 51–70 (1998)MathSciNetCrossRef
11.
go back to reference L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized Quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56, 958–975 (2008)CrossRef L’Ecuyer, P., Lécot, C., Tuffin, B.: A randomized Quasi-Monte Carlo simulation method for Markov chains. Oper. Res. 56, 958–975 (2008)CrossRef
12.
go back to reference L’Ecuyer, P., Lécot, C., L’Archevêque-Gaudet, A.: On array-RQMC for Markov chains: Mapping alternatives and convergence rates. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 485–500. Springer, Berlin (2009)CrossRef L’Ecuyer, P., Lécot, C., L’Archevêque-Gaudet, A.: On array-RQMC for Markov chains: Mapping alternatives and convergence rates. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 485–500. Springer, Berlin (2009)CrossRef
13.
go back to reference L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)MathSciNetCrossRef L’Ecuyer, P., Munger, D., Lécot, C., Tuffin, B.: Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons. Math. Comput. Simul. 143, 191–201 (2018)MathSciNetCrossRef
14.
go back to reference Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009) Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer, New York (2009)
15.
go back to reference Puchhammer, F., Ben Abdellah, A., L’Ecuyer, P.: Variance reduction with Array-RQMC for tau-leaping simulation of stochastic biological and chemical reaction networks. Bull. Math. Biol. 83, 91 (2021)MathSciNetCrossRef Puchhammer, F., Ben Abdellah, A., L’Ecuyer, P.: Variance reduction with Array-RQMC for tau-leaping simulation of stochastic biological and chemical reaction networks. Bull. Math. Biol. 83, 91 (2021)MathSciNetCrossRef
Metadata
Title
Simple Stratified Sampling for Simulating Multi-dimensional Markov Chains
Authors
Rami El Haddad
Christian Lécot
Pierre L’Ecuyer
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-59762-6_15

Premium Partner