Skip to main content
Top

2017 | OriginalPaper | Chapter

Simulating Discrete Twin Evolution in Magnesium Using a Novel Crystal Plasticity Finite Element Model

Authors : Jiahao Cheng, Somnath Ghosh

Published in: Magnesium Technology 2017

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An advanced, image-based crystal plasticity FE model is developed for predicting discrete twin formation and associated heterogeneous deformation in the single and polycrystalline microstructure of Magnesium. Twin formation is sensitive to the underlying microstructure and is responsible for the premature failure of Mg. The physics of nucleation, propagation, and growth of deformation-twins are considered in the CPFE formulation. The twin nucleation model is based on dissociation of sessile dislocations into stable twin loops, while propagation is assumed by layer-by-layer atoms shearing on twin planes and shuffling to reduce the energy barrier. A non-local FE-based computational framework is developed to implement the twin nucleation and propagation laws, which governs the explicit formation of each individual twin. The simulation matches satisfactorily with the experiments in the stress-strain-response and predicts heterogeneous twin formation with strain localization.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Q. Yu, J. Zhang, Y. Jiang, Fatigue damage development in pure polycrystalline magnesium under cyclic tension compression loading. Mater. Sci. Eng. A 528(2526):7816–7826 (2011) Q. Yu, J. Zhang, Y. Jiang, Fatigue damage development in pure polycrystalline magnesium under cyclic tension compression loading. Mater. Sci. Eng. A 528(2526):7816–7826 (2011)
2.
go back to reference A. Staroselsky, L. Anand, A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy az31b. Int. J. Plast 19, 843–1864 (2003)CrossRef A. Staroselsky, L. Anand, A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy az31b. Int. J. Plast 19, 843–1864 (2003)CrossRef
3.
go back to reference S. Graff, W. Brocks, D. Steglich, Yielding of magnesium: from single crystal to polycrystalline aggregates. Int. J. Plast 23, 1957–1978 (2007)CrossRef S. Graff, W. Brocks, D. Steglich, Yielding of magnesium: from single crystal to polycrystalline aggregates. Int. J. Plast 23, 1957–1978 (2007)CrossRef
4.
go back to reference A. Izadbakhsh, K. Inal, R.K. Mishra, M. Niewczas, New crystal plasticity constitutive model for large strain deformation in single crystals of magnesium. Model. Simul. Mater. Sci. Eng. 50, 2185–2202 (2011) A. Izadbakhsh, K. Inal, R.K. Mishra, M. Niewczas, New crystal plasticity constitutive model for large strain deformation in single crystals of magnesium. Model. Simul. Mater. Sci. Eng. 50, 2185–2202 (2011)
5.
go back to reference A. Izadbakhsh, K. Inal, R.K. Mishra, Crystal plasticity based finite element modelling of large strain deformation in am30 magnesium alloy. Model. Simul. Mater. Sci. Eng. 20, 035016 (2012)CrossRef A. Izadbakhsh, K. Inal, R.K. Mishra, Crystal plasticity based finite element modelling of large strain deformation in am30 magnesium alloy. Model. Simul. Mater. Sci. Eng. 20, 035016 (2012)CrossRef
6.
go back to reference J. Zhang, S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60, 945–972 (2012)CrossRef J. Zhang, S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium. J. Mech. Phys. Solids 60, 945–972 (2012)CrossRef
7.
go back to reference H. Abdolvand, M.R. Daymond, Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach-part i: average behavior. J. Mech. Phys. Solids 61, 783–802 (2013)CrossRef H. Abdolvand, M.R. Daymond, Multi-scale modeling and experimental study of twin inception and propagation in hexagonal close-packed materials using a crystal plasticity finite element approach-part i: average behavior. J. Mech. Phys. Solids 61, 783–802 (2013)CrossRef
8.
go back to reference M. Ardeljan, R.J. McCabe, I.J. Beyerlein, M. Knezevic, Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Meth. App. Mech. Eng. 295, 396–413 (2015)CrossRef M. Ardeljan, R.J. McCabe, I.J. Beyerlein, M. Knezevic, Explicit incorporation of deformation twins into crystal plasticity finite element models. Comput. Meth. App. Mech. Eng. 295, 396–413 (2015)CrossRef
9.
go back to reference J. Cheng, S. Ghosh, A crystal plasticity fe model for deformation with twin nucleation in magnesium alloys. Int. J. Plast 67, 148–170 (2015)CrossRef J. Cheng, S. Ghosh, A crystal plasticity fe model for deformation with twin nucleation in magnesium alloys. Int. J. Plast 67, 148–170 (2015)CrossRef
10.
go back to reference M. Niewczas, Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58, 5848–5857 (2010)CrossRef M. Niewczas, Lattice correspondence during twinning in hexagonal close-packed crystals. Acta Mater. 58, 5848–5857 (2010)CrossRef
11.
go back to reference G. Venkataramani, S. Ghosh, M.J. Mills, A size dependent CPFE model for creep and load-shedding in polycrystalline titanium alloys. Acta Mater. 55, 3971–3986 (2007)CrossRef G. Venkataramani, S. Ghosh, M.J. Mills, A size dependent CPFE model for creep and load-shedding in polycrystalline titanium alloys. Acta Mater. 55, 3971–3986 (2007)CrossRef
12.
go back to reference A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity fem including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)CrossRef A. Ma, F. Roters, D. Raabe, A dislocation density based constitutive model for crystal plasticity fem including geometrically necessary dislocations. Acta Mater. 54, 2169–2179 (2006)CrossRef
13.
go back to reference C.J. Bettles, M.A. Gibson, Material rate dependence and localized deformation in crystalline solids. J. Miner. Met. Mater. Soc. 57(5), 46–49 (2005)CrossRef C.J. Bettles, M.A. Gibson, Material rate dependence and localized deformation in crystalline solids. J. Miner. Met. Mater. Soc. 57(5), 46–49 (2005)CrossRef
14.
go back to reference K.U. Kainer, Magnesium alloys and their applications (Wiley, Weinheim, 2003)CrossRef K.U. Kainer, Magnesium alloys and their applications (Wiley, Weinheim, 2003)CrossRef
15.
go back to reference L.R. Barnett, Twinning and the ductility of magnesium alloys: part i: tension twins. Mater. Sci. Eng. A464, 1–7 (2007)CrossRef L.R. Barnett, Twinning and the ductility of magnesium alloys: part i: tension twins. Mater. Sci. Eng. A464, 1–7 (2007)CrossRef
16.
go back to reference J. Cheng, S. Ghosh, Crystal plasticity fe modeling of discrete twin evolution in magnesium alloys. J. Mech. Phys. Solids (2017) (submitted) J. Cheng, S. Ghosh, Crystal plasticity fe modeling of discrete twin evolution in magnesium alloys. J. Mech. Phys. Solids (2017) (submitted)
17.
go back to reference M. Ghazisaeidi, W.A. Curtin, Analysis of dissociation of <c> and <c+a> dislocations to nucleate \( \left\{ { 10{\bar{\text{1}}\text{2}}} \right\} \) twins in mg. Model. Simul. Mater. Sci. Eng. 21:055007 (2013) M. Ghazisaeidi, W.A. Curtin, Analysis of dissociation of <c> and <c+a> dislocations to nucleate \( \left\{ { 10{\bar{\text{1}}\text{2}}} \right\} \) twins in mg. Model. Simul. Mater. Sci. Eng. 21:055007 (2013)
18.
go back to reference J.P. Hirth, J. Lothe. Theory of Dislocations, 2nd edn. (Wiley-Interscience, 1982) J.P. Hirth, J. Lothe. Theory of Dislocations, 2nd edn. (Wiley-Interscience, 1982)
19.
go back to reference J. Wang, J.P. Hirth, C.N. Tom, \( \left( {{\bar{\text{1}}}0 1 2} \right) \) twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 57:5521–5530 (2009) J. Wang, J.P. Hirth, C.N. Tom, \( \left( {{\bar{\text{1}}}0 1 2} \right) \) twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 57:5521–5530 (2009)
20.
go back to reference A. Serra, R.C. Pond, D.J. Bacon, Computer simulation of the structure and mobility of twinning dislocations in hcp metals. Acta Metll. Mater. 39, 1469 (1991)CrossRef A. Serra, R.C. Pond, D.J. Bacon, Computer simulation of the structure and mobility of twinning dislocations in hcp metals. Acta Metll. Mater. 39, 1469 (1991)CrossRef
21.
go back to reference S. Keshavarz, S. Ghosh, Multi-scale crystal plasticity fem approach to modeling nickel based superalloys. Acta Mater. 61, 6549–6561 (2013)CrossRef S. Keshavarz, S. Ghosh, Multi-scale crystal plasticity fem approach to modeling nickel based superalloys. Acta Mater. 61, 6549–6561 (2013)CrossRef
22.
go back to reference Q. Yu, Z. Shan, L. Ju, X. Huang, L. Xiao, J. Sun, E. Ma, Strong crystal size effect on deformation twinning. Nat. Lett. 463, 08692 (2010)CrossRef Q. Yu, Z. Shan, L. Ju, X. Huang, L. Xiao, J. Sun, E. Ma, Strong crystal size effect on deformation twinning. Nat. Lett. 463, 08692 (2010)CrossRef
23.
go back to reference J. Cheng, S. Ghosh, R.K. Mishra, Predicting the deformation anisotropy, tension-compression asymmetry and heterogeneity in mg alloy az31 using cpfe and discrete twin formation model. Acta Mater. (2017) (submitted) J. Cheng, S. Ghosh, R.K. Mishra, Predicting the deformation anisotropy, tension-compression asymmetry and heterogeneity in mg alloy az31 using cpfe and discrete twin formation model. Acta Mater. (2017) (submitted)
24.
go back to reference A.S. Khan, A. Pandey, T. Gnaupel-Herold, R.K. Mishra, Mechanical response and texture evolution of az31 alloy at large strains for different strain rates and temperatures. Int. J. Plast 27, 688–706 (2011)CrossRef A.S. Khan, A. Pandey, T. Gnaupel-Herold, R.K. Mishra, Mechanical response and texture evolution of az31 alloy at large strains for different strain rates and temperatures. Int. J. Plast 27, 688–706 (2011)CrossRef
25.
go back to reference R.K. Mishra, K. Inal, Microstructure Data. Unpublished work (2013) R.K. Mishra, K. Inal, Microstructure Data. Unpublished work (2013)
26.
go back to reference M.A. Groeber, M.A. Jackson, Dream.3d: a digital representation environment for the analysis of microstructure in 3d. Int. Mater. Manuf. Innov. 3 (2014) M.A. Groeber, M.A. Jackson, Dream.3d: a digital representation environment for the analysis of microstructure in 3d. Int. Mater. Manuf. Innov. 3 (2014)
Metadata
Title
Simulating Discrete Twin Evolution in Magnesium Using a Novel Crystal Plasticity Finite Element Model
Authors
Jiahao Cheng
Somnath Ghosh
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-52392-7_26

Premium Partners