Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 7/2020

11-02-2020 | Research Article-Mechanical Engineering

Simulation Examination for Nanoparticle Flow in a Permeable Enclosure via CVFEM Involving MHD Effect

Authors: Houman Babazadeh, Rakesh Kumar, Rebwar Nasir Dara, Ahmad Shafee

Published in: Arabian Journal for Science and Engineering | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present investigation, innovative complex porous enclosure is chosen to simulate the MHD (magnetohydrodynamic) natural convection. One side of porous cavity packed with radiative nanofluid (CuO–water) has curve-shaped triangular wave pattern. To gain insight into outputs, CVFEM (control volume-based finite element method) has been used. Nanofluid behavior is inspected by employing two-temperature model for solid matrix and nanoliquid and KKL model for effective properties of nanofluid with an extensive range of key parameters acting as Hartmann number, radiation parameter, buoyancy impact, phase interacting heat transfer factor. Not only imposing magnetic field but also wavy surface and dispersion of nanomaterial have been considered in the current paper. New numerical approach has been utilized to demonstrate the behavior of nanomaterial through the porous tank. Interrelation of average Nusselt number with involved parameters is also proposed. Outcomes reveal that radiation term has straightforward association with Nusselt number. Greater vortex generates with the rise in shape factor.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Stajnko, J.K.; Jecl, R.; Ravnik, J.: Numerical simulation of convective flow in non-Darcy porous cavity filled with nanofluid. Int. J. Comput. Methods. Exp. Measur. 4(4), 454–463 (2016) Stajnko, J.K.; Jecl, R.; Ravnik, J.: Numerical simulation of convective flow in non-Darcy porous cavity filled with nanofluid. Int. J. Comput. Methods. Exp. Measur. 4(4), 454–463 (2016)
2.
go back to reference Sheikholeslami, M.; Shamlooei, M.: Fe3O4- H2O nanofluid natural convection in presence of thermal radiation. Int. J. Hydrogen Energy 42(9), 5708–5718 (2017) Sheikholeslami, M.; Shamlooei, M.: Fe3O4- H2O nanofluid natural convection in presence of thermal radiation. Int. J. Hydrogen Energy 42(9), 5708–5718 (2017)
3.
go back to reference Sheikholeslami, Mohsen: Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int. J. Hydrog. Energy 42, 19611–19621 (2017) Sheikholeslami, Mohsen: Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles. Int. J. Hydrog. Energy 42, 19611–19621 (2017)
4.
go back to reference Ahmed, K.F.U.; Nasrin, R.; Elias, M.: Natural convective flow in circular and arc cavities filled with water-Cu nanofluid: a comparative study. J. Naval Archit. Mar. Eng. 15(1), 37–52 (2018) Ahmed, K.F.U.; Nasrin, R.; Elias, M.: Natural convective flow in circular and arc cavities filled with water-Cu nanofluid: a comparative study. J. Naval Archit. Mar. Eng. 15(1), 37–52 (2018)
5.
go back to reference Sheikholeslami, M.; Li, Z.; Shafee, A.: Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int. J. Heat Mass Transf. 127, 665–674 (2018) Sheikholeslami, M.; Li, Z.; Shafee, A.: Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int. J. Heat Mass Transf. 127, 665–674 (2018)
6.
go back to reference Akter, S.: Parvin, Analysis of a natural convection flow in a trapezoidal cavity containing a rectangular heated body in presence of external oriented magnetic field. J. Sci. Res. 10(1), 11–23 (2018)MathSciNet Akter, S.: Parvin, Analysis of a natural convection flow in a trapezoidal cavity containing a rectangular heated body in presence of external oriented magnetic field. J. Sci. Res. 10(1), 11–23 (2018)MathSciNet
7.
go back to reference Sheikholeslami, M.; Zeeshan, A.: Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput. Methods Appl. Mech. Eng. 320, 68–81 (2017)MathSciNetMATH Sheikholeslami, M.; Zeeshan, A.: Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput. Methods Appl. Mech. Eng. 320, 68–81 (2017)MathSciNetMATH
8.
go back to reference Sheikholeslami, M.: Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J. Mol. Liq. 266, 495–503 (2018) Sheikholeslami, M.: Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J. Mol. Liq. 266, 495–503 (2018)
9.
go back to reference Sheikholeslami, Mohsen; Seyednezhad, Mohadeseh: Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int. J. Heat Mass Transf. 120, 772–781 (2018) Sheikholeslami, Mohsen; Seyednezhad, Mohadeseh: Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int. J. Heat Mass Transf. 120, 772–781 (2018)
10.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int. J. Heat Mass Transf. 115, 180–191 (2017) Sheikholeslami, M.; Shehzad, S.A.: CVFEM for influence of external magnetic source on Fe3O4–H2O nanofluid behavior in a permeable cavity considering shape effect. Int. J. Heat Mass Transf. 115, 180–191 (2017)
11.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: Numerical analysis of Fe3O4 –H2O nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 118, 182–192 (2018) Sheikholeslami, M.; Shehzad, S.A.: Numerical analysis of Fe3O4 –H2O nanofluid flow in permeable media under the effect of external magnetic source. Int. J. Heat Mass Transf. 118, 182–192 (2018)
12.
go back to reference Chamkha, A.J.; Selimefendigil, F.; Ismael, M.A.: Mixed convection in a partially layer porous cavity with an inner rotating cylinder. Numer. Heat Transf. Part A: Appl. 69(6), 659–675 (2016) Chamkha, A.J.; Selimefendigil, F.; Ismael, M.A.: Mixed convection in a partially layer porous cavity with an inner rotating cylinder. Numer. Heat Transf. Part A: Appl. 69(6), 659–675 (2016)
13.
go back to reference Sheikholeslami, M.; Vajravelu, K.: Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Math. Comput. 298, 272–282 (2017)MathSciNetMATH Sheikholeslami, M.; Vajravelu, K.: Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl. Math. Comput. 298, 272–282 (2017)MathSciNetMATH
14.
go back to reference Wang, L.; Huang, C.; Yang, X.; Chai, Z.; Shi, B.: Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 128, 688–699 (2019) Wang, L.; Huang, C.; Yang, X.; Chai, Z.; Shi, B.: Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int. J. Heat Mass Transf. 128, 688–699 (2019)
15.
go back to reference Zhao, Y.; Shi, B.; Chai, Z.; Wang, L.: Lattice Boltzmann simulation of melting in a cubical cavity with a local heat-flux source. Int. J. Heat Mass Transf. 127, 497–506 (2018) Zhao, Y.; Shi, B.; Chai, Z.; Wang, L.: Lattice Boltzmann simulation of melting in a cubical cavity with a local heat-flux source. Int. J. Heat Mass Transf. 127, 497–506 (2018)
16.
go back to reference Das, D.; Lukose, L.; Basak, T.: Role of multiple discrete heaters to minimize entropy generation during natural convection in fluid filled square and triangular enclosures. Int. J. Heat Mass Transf. 127, 1290–1312 (2018) Das, D.; Lukose, L.; Basak, T.: Role of multiple discrete heaters to minimize entropy generation during natural convection in fluid filled square and triangular enclosures. Int. J. Heat Mass Transf. 127, 1290–1312 (2018)
17.
go back to reference Biswal, P.; Basak, T.: Heatlines visualization of convective heat flow during differential heating of porous enclosures with concave/convex side walls. Int. J. Numer. Meth. Heat Fluid Flow 28(7), 1506–1538 (2018) Biswal, P.; Basak, T.: Heatlines visualization of convective heat flow during differential heating of porous enclosures with concave/convex side walls. Int. J. Numer. Meth. Heat Fluid Flow 28(7), 1506–1538 (2018)
19.
go back to reference Sheikholeslami, M.: Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265, 347–355 (2018) Sheikholeslami, M.: Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265, 347–355 (2018)
20.
go back to reference Kumar, R.; Sood, S.; Shehzad, S.A.; Sheikholeslami, M.: Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness. J. Mol. Liq. 248, 143–152 (2017) Kumar, R.; Sood, S.; Shehzad, S.A.; Sheikholeslami, M.: Radiative heat transfer study for flow of non-Newtonian nanofluid past a Riga plate with variable thickness. J. Mol. Liq. 248, 143–152 (2017)
21.
go back to reference Kumar, R.; Sood, S.; Sheikholeslami, M.; Shehzad, S.A.: Nonlinear thermal radiation and cubic autocatalysis chemical reaction effect in the flow of stretched nanofluid under rotational oscillation. J. Colloid Interface Sci. 505, 253–265 (2017) Kumar, R.; Sood, S.; Sheikholeslami, M.; Shehzad, S.A.: Nonlinear thermal radiation and cubic autocatalysis chemical reaction effect in the flow of stretched nanofluid under rotational oscillation. J. Colloid Interface Sci. 505, 253–265 (2017)
22.
go back to reference Sheikholeslami, M.; Bhatti, M.M.: Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int. J. Heat Mass Transf. 111, 1039–1049 (2017) Sheikholeslami, M.; Bhatti, M.M.: Forced convection of nanofluid in presence of constant magnetic field considering shape effects of nanoparticles. Int. J. Heat Mass Transf. 111, 1039–1049 (2017)
23.
go back to reference Kumar, R.; Kumar, R.; Shehzad, S.A.; Sheikholeslami, M.: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation. Int. J. Heat Mass Transf. 120, 540–551 (2018) Kumar, R.; Kumar, R.; Shehzad, S.A.; Sheikholeslami, M.: Rotating frame analysis of radiating and reacting ferro-nanofluid considering Joule heating and viscous dissipation. Int. J. Heat Mass Transf. 120, 540–551 (2018)
24.
go back to reference Sheikholeslami, M.; Rokni, H.B.: Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018) Sheikholeslami, M.; Rokni, H.B.: Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int. J. Heat Mass Transf. 118, 823–831 (2018)
25.
go back to reference Sheikholeslami, M.; Rokni, H.B.: Simulation of nanofluid heat transfer in presence of magnetic field: A review. Int. J. Heat Mass Transf. 115, 1203–1233 (2017) Sheikholeslami, M.; Rokni, H.B.: Simulation of nanofluid heat transfer in presence of magnetic field: A review. Int. J. Heat Mass Transf. 115, 1203–1233 (2017)
26.
go back to reference Sheikholeslami, M.; Haq, R.U.; Shafee, A.; Li, Z.: Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transfer 130, 1322–1342 (2019) Sheikholeslami, M.; Haq, R.U.; Shafee, A.; Li, Z.: Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int. J. Heat Mass Transfer 130, 1322–1342 (2019)
27.
go back to reference Sheikholeslami, M.; Haq, R.U.; Shafee, A.; Li, Z.; Elaraki, Y.G.: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transfer 135, 470–478 (2019) Sheikholeslami, M.; Haq, R.U.; Shafee, A.; Li, Z.; Elaraki, Y.G.: Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int. J. Heat Mass Transfer 135, 470–478 (2019)
28.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int. J. Heat Mass Transfer 122, 1264–1271 (2018) Sheikholeslami, M.; Shehzad, S.A.: CVFEM simulation for nanofluid migration in a porous medium using Darcy model. Int. J. Heat Mass Transfer 122, 1264–1271 (2018)
29.
go back to reference Sheikholeslami, M.; Shehzad, S.A.; Li, Z.: Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int. J. Heat Mass Transfer 125, 375–386 (2018) Sheikholeslami, M.; Shehzad, S.A.; Li, Z.: Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int. J. Heat Mass Transfer 125, 375–386 (2018)
30.
go back to reference Sheikholeslami, M.; Jafarya, M.: Zhixiong Li, Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int. J. Heat Mass Transfer 124, 980–989 (2018) Sheikholeslami, M.; Jafarya, M.: Zhixiong Li, Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int. J. Heat Mass Transfer 124, 980–989 (2018)
31.
go back to reference Sheikholeslami, M.; Sadoughi, M.K.: Simulation of CuO- water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018) Sheikholeslami, M.; Sadoughi, M.K.: Simulation of CuO- water nanofluid heat transfer enhancement in presence of melting surface. Int. J. Heat Mass Transf. 116, 909–919 (2018)
32.
go back to reference Sheikholeslami, M.; Seyednezhad, M.: Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int. J. Heat Mass Transf. 114, 1169–1180 (2017) Sheikholeslami, M.; Seyednezhad, M.: Nanofluid heat transfer in a permeable enclosure in presence of variable magnetic field by means of CVFEM. Int. J. Heat Mass Transf. 114, 1169–1180 (2017)
33.
go back to reference Sheikholeslami, M.; Bhatti, M.M.: Active method for nanofluid heat transfer enhancement by means of EHD. Int. J. Heat Mass Transf. 109, 115–122 (2017) Sheikholeslami, M.; Bhatti, M.M.: Active method for nanofluid heat transfer enhancement by means of EHD. Int. J. Heat Mass Transf. 109, 115–122 (2017)
34.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int. J. Heat Mass Transf. 109, 82–92 (2017) Sheikholeslami, M.; Shehzad, S.A.: Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int. J. Heat Mass Transf. 109, 82–92 (2017)
35.
go back to reference Sheikholeslami, M.; Rokni, H.B.: Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transf. 107, 288–299 (2017) Sheikholeslami, M.; Rokni, H.B.: Nanofluid two phase model analysis in existence of induced magnetic field. Int. J. Heat Mass Transf. 107, 288–299 (2017)
36.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int. J. Heat Mass Transf. 106, 1261–1269 (2017) Sheikholeslami, M.; Shehzad, S.A.: Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int. J. Heat Mass Transf. 106, 1261–1269 (2017)
37.
go back to reference Sheikholeslami, M.; Ellahi, R.: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015) Sheikholeslami, M.; Ellahi, R.: Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 89, 799–808 (2015)
38.
go back to reference Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal non-equilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015) Sheremet, M.A.; Pop, I.; Nazar, R.: Natural convection in a square cavity filled with a porous medium saturated with a nanofluid using the thermal non-equilibrium model with a Tiwari and Das nanofluid model. Int. J. Mech. Sci. 100, 312–321 (2015)
39.
go back to reference Baytas, A.C.; Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002) Baytas, A.C.; Pop, I.: Free convection in a square porous cavity using a thermal non-equilibrium model. Int. J. Therm. Sci. 41, 861–870 (2002)
40.
go back to reference Alsabery, A.I.; Saleh, H.; Hashim, I.; Siddheshwar, P.G.: Transient natural convection heat transfer in nanoliquid-saturated porous oblique cavity using thermal non-equilibrium model. Int. J. Mech. Sci. 114, 233–245 (2016) Alsabery, A.I.; Saleh, H.; Hashim, I.; Siddheshwar, P.G.: Transient natural convection heat transfer in nanoliquid-saturated porous oblique cavity using thermal non-equilibrium model. Int. J. Mech. Sci. 114, 233–245 (2016)
41.
go back to reference Tahmasebi, M.; Mahdavi, M.: Ghalambaz, Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat Transf. Part A: Appl. 73(4), 254–276 (2018) Tahmasebi, M.; Mahdavi, M.: Ghalambaz, Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer. Heat Transf. Part A: Appl. 73(4), 254–276 (2018)
42.
go back to reference Alsabery, A.I.; Chamkha, A.J.; Saleh, H.; Hashim, I.; Chanane, B.: Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity. Phys. A 470, 20–38 (2017)MathSciNetMATH Alsabery, A.I.; Chamkha, A.J.; Saleh, H.; Hashim, I.; Chanane, B.: Effects of finite wall thickness and sinusoidal heating on convection in nanofluid-saturated local thermal non-equilibrium porous cavity. Phys. A 470, 20–38 (2017)MathSciNetMATH
43.
go back to reference Sheikholeslami, M.; Shehzad, S.A.: Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int. J. Heat Mass Transf. 120, 1200–1212 (2018) Sheikholeslami, M.; Shehzad, S.A.: Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int. J. Heat Mass Transf. 120, 1200–1212 (2018)
44.
go back to reference Sheikholeslami, Mohsen; Rokni, Houman B.: Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int. J. Heat Mass Transf. 114, 517–526 (2017) Sheikholeslami, Mohsen; Rokni, Houman B.: Melting heat transfer influence on nanofluid flow inside a cavity in existence of magnetic field. Int. J. Heat Mass Transf. 114, 517–526 (2017)
45.
go back to reference Sheikholeslami, M.; Sadoughi, M.: Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int. J. Heat Mass Transf. 113, 106–114 (2017) Sheikholeslami, M.; Sadoughi, M.: Mesoscopic method for MHD nanofluid flow inside a porous cavity considering various shapes of nanoparticles. Int. J. Heat Mass Transf. 113, 106–114 (2017)
46.
go back to reference Sheikholeslami, M.; Ghasemi, A.: Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int. J. Heat Mass Transf. 123, 418–431 (2018) Sheikholeslami, M.; Ghasemi, A.: Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int. J. Heat Mass Transf. 123, 418–431 (2018)
47.
go back to reference Sheikholeslami, M.; Rokni, H.B.: Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J. Mol. Liq. 232, 390–395 (2017) Sheikholeslami, M.; Rokni, H.B.: Influence of EFD viscosity on nanofluid forced convection in a cavity with sinusoidal wall. J. Mol. Liq. 232, 390–395 (2017)
48.
go back to reference Sheikholeslami, M.; Shehzad, S.A.; Li, Z.; Shafee, A.: Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int. J. Heat Mass Transf. 127, 614–622 (2018) Sheikholeslami, M.; Shehzad, S.A.; Li, Z.; Shafee, A.: Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int. J. Heat Mass Transf. 127, 614–622 (2018)
49.
go back to reference Sheikholeslami, M.; Hayat, T.; Alsaedi, A.; Abelman, S.: Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int. J. Heat Mass Transf. 108, 2558–2565 (2017) Sheikholeslami, M.; Hayat, T.; Alsaedi, A.; Abelman, S.: Numerical analysis of EHD nanofluid force convective heat transfer considering electric field dependent viscosity. Int. J. Heat Mass Transf. 108, 2558–2565 (2017)
51.
go back to reference Sheikholeslami, M.: Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J. Mol. Liq. 263, 303–315 (2018) Sheikholeslami, M.: Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J. Mol. Liq. 263, 303–315 (2018)
52.
go back to reference Sheikholeslami, M.; Rezaeianjouybari, B.; Darzi, M.; Shafee, A.; Li, Z.; Nguyen, T.K.: Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. International Journal of Heat and Mass Transfer 141(2019), 974–980 (2019) Sheikholeslami, M.; Rezaeianjouybari, B.; Darzi, M.; Shafee, A.; Li, Z.; Nguyen, T.K.: Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. International Journal of Heat and Mass Transfer 141(2019), 974–980 (2019)
54.
go back to reference Sheikholeslami, M.; Darzi, M.; Sadoughi, M.K.: Heat transfer improvement and Pressure Drop during condensation of refrigerant-based Nanofluid. An Experimental Procedure, International Journal of Heat and Mass Transfer 122, 643–650 (2018) Sheikholeslami, M.; Darzi, M.; Sadoughi, M.K.: Heat transfer improvement and Pressure Drop during condensation of refrigerant-based Nanofluid. An Experimental Procedure, International Journal of Heat and Mass Transfer 122, 643–650 (2018)
55.
go back to reference Rabbi, K.M.; Sheikholeslami, M.; Karim, A; Shafee, A; Li, Z; Tlili, I.: Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial, Physica A: Statistical Mechanics and its Applications, Physica A 541, 123520 (2020) Rabbi, K.M.; Sheikholeslami, M.; Karim, A; Shafee, A; Li, Z; Tlili, I.: Prediction of MHD flow and entropy generation by Artificial Neural Network in square cavity with heater-sink for nanomaterial, Physica A: Statistical Mechanics and its Applications, Physica A 541, 123520 (2020)
57.
go back to reference Sheikholeslami, M.; Jafaryar, M.: Mohammadali Hedayat, Ahmad Shafee, Zhixiong Li, Truong Khang Nguyen, Mohsen Bakouri, Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int. J. Heat Mass Transf. 137, 1290–1300 (2019) Sheikholeslami, M.; Jafaryar, M.: Mohammadali Hedayat, Ahmad Shafee, Zhixiong Li, Truong Khang Nguyen, Mohsen Bakouri, Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int. J. Heat Mass Transf. 137, 1290–1300 (2019)
58.
go back to reference Qin, Y.; Luo, J.; Chen, Z.; Mei, G.; Yan, L.-E.: Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol. Energy 171, 971–976 (2018) Qin, Y.; Luo, J.; Chen, Z.; Mei, G.; Yan, L.-E.: Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol. Energy 171, 971–976 (2018)
59.
go back to reference Sheikholeslami, M.; Jafaryar, M.: Ahmad Shafee, Zhixiong Li, Rizwan-ul Haq, Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int. J. Heat Mass Transf. 136, 1233–1240 (2019) Sheikholeslami, M.; Jafaryar, M.: Ahmad Shafee, Zhixiong Li, Rizwan-ul Haq, Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int. J. Heat Mass Transf. 136, 1233–1240 (2019)
61.
go back to reference Sheikholeslami, M.: Omid Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J. Clean. Prod. 215, 963–977 (2019) Sheikholeslami, M.: Omid Mahian, Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J. Clean. Prod. 215, 963–977 (2019)
62.
go back to reference Sheikholeslami, M.: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)MathSciNetMATH Sheikholeslami, M.: New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput. Methods Appl. Mech. Eng. 344, 319–333 (2019)MathSciNetMATH
63.
go back to reference Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019)MathSciNetMATH Sheikholeslami, M.: Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comput. Methods Appl. Mech. Eng. 344, 306–318 (2019)MathSciNetMATH
Metadata
Title
Simulation Examination for Nanoparticle Flow in a Permeable Enclosure via CVFEM Involving MHD Effect
Authors
Houman Babazadeh
Rakesh Kumar
Rebwar Nasir Dara
Ahmad Shafee
Publication date
11-02-2020
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 7/2020
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-020-04381-1

Other articles of this Issue 7/2020

Arabian Journal for Science and Engineering 7/2020 Go to the issue

Premium Partners