Skip to main content
Top
Published in:

08-03-2024

Simulation of avalanche time in thin GaN/4H–SiC heterojunction avalanche photodiodes

Authors: P. L. Cheang, A. H. You, Y. L. Yap, C. C. Sun

Published in: Journal of Computational Electronics | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A random ionization-time model is introduced to compute the avalanche time of double carrier multiplication in heterojunction avalanche photodiodes (APDs). The Monte Carlo method is employed to determine the distribution of carriers for both electron- and hole- initiated multiplications in the GaN/4H–SiC heterojunction APDs of multiplication widths, w = 0.1 and 0.2 μm, incorporating of dead space and hetero-interface effects at high electric field region with respect to time. The carriers that are injected into the GaN layer will undergo multiplication based on material-dependent electron and hole impact ionization coefficients αGaN and βGaN, then cross the heterojunction based on the probability and followed by the multiplication based on material dependent α4H–SiC and β4H–SiC in the 4H–SiC layer. The avalanche time is calculated from the instant the parent carrier enters the multiplication region until all carriers leave the multiplication region. Our model is able to show the distribution of carriers with respect to space and time, inclusive of the presence of secondary carriers due to different groups of feedback carriers and dead time. Due to potential difference at hetero-interface, the avalanche time of the GaN/4H–SiC heterojunction APDs is less than that of the GaN and 4H–SiC homojunction APDs of the same multiplication width; hence, they are good candidates for sensing and switching devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Monroy, E., Omnès, F., Calle, F.: Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2(4), R33 (2003)CrossRef Monroy, E., Omnès, F., Calle, F.: Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol. 2(4), R33 (2003)CrossRef
2.
go back to reference Alaie, Z., Nejad, S.M., Yousefi, M.H.: Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 29, 16–55 (2015)CrossRef Alaie, Z., Nejad, S.M., Yousefi, M.H.: Recent advances in ultraviolet photodetectors. Mater. Sci. Semicond. Process. 29, 16–55 (2015)CrossRef
3.
go back to reference Anisha, K., Usman, U.M., Muralidharan, R., Srinivasan, R., Digbijoy, N.N.: The road ahead for ultrawide bandgap solar-blind UV photodetectors. J. Appl. Phys. 131, 150901 (2022)CrossRef Anisha, K., Usman, U.M., Muralidharan, R., Srinivasan, R., Digbijoy, N.N.: The road ahead for ultrawide bandgap solar-blind UV photodetectors. J. Appl. Phys. 131, 150901 (2022)CrossRef
4.
go back to reference Hayat, M.M., Kwon, O.H., Pan, Y., Sotirelis, P., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Gain-bandwidth characteristics of thin avalanche photodiodes. IEEE Trans. Electron. Device. 49(5), 770–781 (2002)CrossRef Hayat, M.M., Kwon, O.H., Pan, Y., Sotirelis, P., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Gain-bandwidth characteristics of thin avalanche photodiodes. IEEE Trans. Electron. Device. 49(5), 770–781 (2002)CrossRef
5.
go back to reference Li, B., Yang, X.H., Yin, W.H., Lü, Q.Q., Cui, R., Han, Q.: A high-speed avalanche photodiode. J. Semicond. 35(7), 074009 (2014)CrossRef Li, B., Yang, X.H., Yin, W.H., Lü, Q.Q., Cui, R., Han, Q.: A high-speed avalanche photodiode. J. Semicond. 35(7), 074009 (2014)CrossRef
6.
go back to reference Masahiro, N., Toshihide, Y., Fumito, N., Hideaki, M., Kimikazu, S.: High-speed avalanche photodiodes toward 100-Gbit/s per lambda era. NTT Tech Rev. 16(11), 45–51 (2018)CrossRef Masahiro, N., Toshihide, Y., Fumito, N., Hideaki, M., Kimikazu, S.: High-speed avalanche photodiodes toward 100-Gbit/s per lambda era. NTT Tech Rev. 16(11), 45–51 (2018)CrossRef
7.
go back to reference Zhao, D.G., Jiang, D.S.: GaN based ultraviolet photodetectors Photodiodes—World Activities in 2011, pp. 333–352. InTech, London (2011) Zhao, D.G., Jiang, D.S.: GaN based ultraviolet photodetectors Photodiodes—World Activities in 2011, pp. 333–352. InTech, London (2011)
8.
go back to reference Besendörfer, S., Meissner, E., Tajalli, A., Meneghini, M., Freitas, J.A., Derluyn, J., Medjdoub, F., Meneghesso, G., Friedrich, J., Erlbacher, T.: Vertical breakdown of GaN on Si due to Vpits. J. Appl. Phys. 127, 015701 (2020)CrossRef Besendörfer, S., Meissner, E., Tajalli, A., Meneghini, M., Freitas, J.A., Derluyn, J., Medjdoub, F., Meneghesso, G., Friedrich, J., Erlbacher, T.: Vertical breakdown of GaN on Si due to Vpits. J. Appl. Phys. 127, 015701 (2020)CrossRef
9.
go back to reference Moresco, M., Bertazzi, F., Bellotti, E.: A full-band Monte Carlo study of gain, bandwidth and noise of GaN avalanche photodiodes. In: Numerical Simulation of Optoelectronic Device, pp. 27–28 (2010) Moresco, M., Bertazzi, F., Bellotti, E.: A full-band Monte Carlo study of gain, bandwidth and noise of GaN avalanche photodiodes. In: Numerical Simulation of Optoelectronic Device, pp. 27–28 (2010)
10.
go back to reference Wesley, O.T.L., Cheang, P.L., You, A.H., Chan, Y.K.: Mean multiplication gain and excess noise factor of GaN and Al0.45Ga0.55N avalanche photodiodes. Eur. Phys. J. Appl. Phys. 92, 10301 (2020)CrossRef Wesley, O.T.L., Cheang, P.L., You, A.H., Chan, Y.K.: Mean multiplication gain and excess noise factor of GaN and Al0.45Ga0.55N avalanche photodiodes. Eur. Phys. J. Appl. Phys. 92, 10301 (2020)CrossRef
11.
go back to reference Su, L.L., Zhou, D., Lu, H., Zhang, R., Zheng, Y.D.: Recent progress of SiC UV single photon counting avalanche photodiodes. J. Semicond. 40, 121802 (2019)CrossRef Su, L.L., Zhou, D., Lu, H., Zhang, R., Zheng, Y.D.: Recent progress of SiC UV single photon counting avalanche photodiodes. J. Semicond. 40, 121802 (2019)CrossRef
12.
go back to reference Guo, X.L., Larry, B.R., Greg, T.D., Jody, A.F., Peter, M.S., Ariane, L.B., Campbell, J.C.: Demonstration of ultraviolet separate absorption and multiplication 4H–SiC avalanche photodiodes. IEEE Photon. Technol. Lett. 18(1), 136–138 (2006)CrossRef Guo, X.L., Larry, B.R., Greg, T.D., Jody, A.F., Peter, M.S., Ariane, L.B., Campbell, J.C.: Demonstration of ultraviolet separate absorption and multiplication 4H–SiC avalanche photodiodes. IEEE Photon. Technol. Lett. 18(1), 136–138 (2006)CrossRef
13.
go back to reference Sun, C.C., A. H. You, A.H., Wong, E.K.: Multiplication gain and excess noise factor in 4H–SiC APD In: IEEE-ICSE2012 Proc. Kuala Lumpur, Malaysia, 366–369 (2012) Sun, C.C., A. H. You, A.H., Wong, E.K.: Multiplication gain and excess noise factor in 4H–SiC APD In: IEEE-ICSE2012 Proc. Kuala Lumpur, Malaysia, 366–369 (2012)
14.
go back to reference Steinmann, P., Hull, B., Ji, I.H., Lichtenwalner, D., Edward, V.B.: Temperature dependence of avalanche breakdown in 4H–SiC devices. J. Appl. Phys. 133, 235705 (2023)CrossRef Steinmann, P., Hull, B., Ji, I.H., Lichtenwalner, D., Edward, V.B.: Temperature dependence of avalanche breakdown in 4H–SiC devices. J. Appl. Phys. 133, 235705 (2023)CrossRef
15.
go back to reference Zhou, Q.G., McIntosh, D.C., Lu, Z.W., Campbell, J.C., Sampath, A.V., Shen, H.G., Wraback, M.: GaN/SiC avalanche photodiodes. Appl. Phys. Lett. 99, 131110 (2011)CrossRef Zhou, Q.G., McIntosh, D.C., Lu, Z.W., Campbell, J.C., Sampath, A.V., Shen, H.G., Wraback, M.: GaN/SiC avalanche photodiodes. Appl. Phys. Lett. 99, 131110 (2011)CrossRef
16.
go back to reference Cheang, P.L., Wong, E.K., Teo, L.L.: Avalanche characteristics in thin GaN avalanche photodiodes. Japan. J. Appl. Phys. 58, 082001 (2019)CrossRef Cheang, P.L., Wong, E.K., Teo, L.L.: Avalanche characteristics in thin GaN avalanche photodiodes. Japan. J. Appl. Phys. 58, 082001 (2019)CrossRef
17.
go back to reference Ghosh, A., Ghosh, K.K.: Monte Carlo simulation of excess noise in heterojunction avalanche photodetector. Optical Quantum Electron. 40, 439–446 (2008)CrossRef Ghosh, A., Ghosh, K.K.: Monte Carlo simulation of excess noise in heterojunction avalanche photodetector. Optical Quantum Electron. 40, 439–446 (2008)CrossRef
18.
go back to reference Cheang, P.L., Wong, E.K., Teo, L.L.: Multiplication width dependent avalanche characteristics in GaN/4H–SiC heterojunction avalanche photodiodes. Opt. Quant. Electron. 53, 554 (2021)CrossRef Cheang, P.L., Wong, E.K., Teo, L.L.: Multiplication width dependent avalanche characteristics in GaN/4H–SiC heterojunction avalanche photodiodes. Opt. Quant. Electron. 53, 554 (2021)CrossRef
19.
go back to reference Kou, J.Q., Tian, K.K., Chu, C.S., Zhang, Y.H., Zhou, X.Y., Feng, Z.H., Zhang, Z.H.: Optimization strategy of 4H–SiC separated absorption charge and multiplication avalanche photodiode structure for high ultraviolet detection efficiency. Nanoscale Res. Lett. 14, 396 (2019)CrossRef Kou, J.Q., Tian, K.K., Chu, C.S., Zhang, Y.H., Zhou, X.Y., Feng, Z.H., Zhang, Z.H.: Optimization strategy of 4H–SiC separated absorption charge and multiplication avalanche photodiode structure for high ultraviolet detection efficiency. Nanoscale Res. Lett. 14, 396 (2019)CrossRef
20.
go back to reference Sampath, A.V., Zhou, Q.G., Enck, R.W., McIntosh, D., Shen, H., Campbell, J.C., Wraback, M.: P-type interface charge control layers for enabling GaN/SiC separate absorption and multiplications. Appl. Phys. Lett. 101, 093506 (2012)CrossRef Sampath, A.V., Zhou, Q.G., Enck, R.W., McIntosh, D., Shen, H., Campbell, J.C., Wraback, M.: P-type interface charge control layers for enabling GaN/SiC separate absorption and multiplications. Appl. Phys. Lett. 101, 093506 (2012)CrossRef
21.
go back to reference Sampath, A.V., Zhou, Q.G., Enck, R., Gallinat, C.S., Shen, P., Campbell. J.C., Wraback, M.: Impact of hetero-interface on the photoresponse of GaN/SiC separate absorption and multiplication avalanche photodiodes. ISDRS 2011, December 7–9, College Park, MD, USA (2011) Sampath, A.V., Zhou, Q.G., Enck, R., Gallinat, C.S., Shen, P., Campbell. J.C., Wraback, M.: Impact of hetero-interface on the photoresponse of GaN/SiC separate absorption and multiplication avalanche photodiodes. ISDRS 2011, December 7–9, College Park, MD, USA (2011)
22.
go back to reference Akturk, A., Goldsman, N., Potbhare, S., Lelis, A.: High field density-functional-theory based Monte Carlo: 4H–SiC impact ionization and velocity saturation. J. Appl. Phys. 105, 033703 (2009)CrossRef Akturk, A., Goldsman, N., Potbhare, S., Lelis, A.: High field density-functional-theory based Monte Carlo: 4H–SiC impact ionization and velocity saturation. J. Appl. Phys. 105, 033703 (2009)CrossRef
23.
go back to reference Emmons, R.B., Lucovsky, G.: The frequency response of avalanching photodiodes. IEEE Trans. Electron Devices 13(3), 297–305 (1966)CrossRef Emmons, R.B., Lucovsky, G.: The frequency response of avalanching photodiodes. IEEE Trans. Electron Devices 13(3), 297–305 (1966)CrossRef
24.
go back to reference Hayat, M.M., Saleh, B.E.A.: Statistical properties of the impulse response function of doublecarrier multiplication avalanche photodiodes including the effect of dead space. J. Lightwave Technol. 10(10), 1415–1425 (1992)CrossRef Hayat, M.M., Saleh, B.E.A.: Statistical properties of the impulse response function of doublecarrier multiplication avalanche photodiodes including the effect of dead space. J. Lightwave Technol. 10(10), 1415–1425 (1992)CrossRef
25.
go back to reference Sun, P., Hayat, M.M., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Correlation between gain and buildup-time fluctuations in ultrafast avalanche photodiodes and its effect on receiver sensitivity. In: OFC/NFOEC Technical Digest. Optical Fiber Comm. Conf, 1–3 (2005) Sun, P., Hayat, M.M., Campbell, J.C., Saleh, B.E.A., Teich, M.C.: Correlation between gain and buildup-time fluctuations in ultrafast avalanche photodiodes and its effect on receiver sensitivity. In: OFC/NFOEC Technical Digest. Optical Fiber Comm. Conf, 1–3 (2005)
26.
go back to reference Petticrew, J.D., Dimler, S.J., Zhou, X., Morrison, A.P., Tan, C.H., Ng, J.S.: Avalanche breakdown timing statistics for silicon single photon avalanche diodes. IEEE J. Sel. Top. Quantum Electron. 24(2), 3801506 (2018)CrossRef Petticrew, J.D., Dimler, S.J., Zhou, X., Morrison, A.P., Tan, C.H., Ng, J.S.: Avalanche breakdown timing statistics for silicon single photon avalanche diodes. IEEE J. Sel. Top. Quantum Electron. 24(2), 3801506 (2018)CrossRef
27.
go back to reference Hadis Morkoç: Handbook of nitride semiconductors and devices. Vol. 3: GaN-based optical and electronic devices. Wiley (2009) Hadis Morkoç: Handbook of nitride semiconductors and devices. Vol. 3: GaN-based optical and electronic devices. Wiley (2009)
28.
go back to reference Ong, D.S., Li, K.F., Rees, G.J., David, J.P.R., Robson, P.N.: A simple model to determine multiplication and noise in avalanche photodiodes. J. Appl. Phys. 83(6), 3426–3428 (1998)CrossRef Ong, D.S., Li, K.F., Rees, G.J., David, J.P.R., Robson, P.N.: A simple model to determine multiplication and noise in avalanche photodiodes. J. Appl. Phys. 83(6), 3426–3428 (1998)CrossRef
29.
go back to reference Ng, J.S., Tan, C.H., Ng, B.K., Hambleton, P.J., David, J.P.R., Rees, G.J., You, A.H., Ong, D.S.: Effect of dead space on avalanche speed [APDs]. IEEE Trans. Electron Dev. 49(4), 544–549 (2002)CrossRef Ng, J.S., Tan, C.H., Ng, B.K., Hambleton, P.J., David, J.P.R., Rees, G.J., You, A.H., Ong, D.S.: Effect of dead space on avalanche speed [APDs]. IEEE Trans. Electron Dev. 49(4), 544–549 (2002)CrossRef
30.
go back to reference Cheang, P.L.: Compound heterojunction avalanche photodiode with dead space and hetero-interface effects simulated using monte carlo method. Multimedia University, PhD thesis (2021) Cheang, P.L.: Compound heterojunction avalanche photodiode with dead space and hetero-interface effects simulated using monte carlo method. Multimedia University, PhD thesis (2021)
Metadata
Title
Simulation of avalanche time in thin GaN/4H–SiC heterojunction avalanche photodiodes
Authors
P. L. Cheang
A. H. You
Y. L. Yap
C. C. Sun
Publication date
08-03-2024
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2024
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-024-02146-9