Skip to main content
Top

2025 | OriginalPaper | Chapter

6. Simulation of Diagnostic Signals of Electric Equipment

Authors : Vitalii Babak, Sergii Babak, Artur Zaporozhets

Published in: Statistical Diagnostics of Electric Power Equipment

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter explores the advancement in diagnostic signal simulations for electrical equipment, emphasizing acoustic emission (AE) signals, vibration during shock diagnostics, and the detection of rod fastening defects using vibration analysis. The first section introduces a comprehensive approach for simulating diagnostic signals utilizing linear random processes (LRPs), providing a foundation for the efficient analysis and verification of diagnostic features without extensive physical experimentation. It elaborates on the development and application of a simulation model for AE signals in electrical equipment, showcasing how this model facilitates the understanding of signal propagation. Further, the chapter delves into the simulation of AE signals and vibration in electrical equipment under shock diagnostics, highlighting a developed program that generates AE signals mimicking those from a piezoelectric transducer. The program's ability to modify various parameters allows for a detailed analysis of their influence on AE and vibration signals, offering insights consistent with theoretical models and real measurements. Moreover, the study proposes the use of the parameter β, derived from the power spectrum, to detect defects in rod fastening through vibration analysis, marking a significant step towards predictive maintenance and fault diagnosis in mechanical systems. By comparing the β values of suspended and fixed rods, the chapter validates the effectiveness of numerical models in replicating real-world dynamics. The investigation extends to the simulation of failure modes in diesel-electric generator cylinders, suggesting a novel approach to diagnosing specific cylinder failures through amplitude-frequency and phase-frequency characteristics analysis. Collectively, this research presents a valuable contribution to the field of diagnostic signal simulation, offering novel methods and tools for the analysis, verification, and simulation of diagnostic signals in electrical and mechanical systems. The findings promise to enhance the precision of fault diagnostics, reduce dependency on physical experiments, and pave the way for more effective predictive maintenance strategies.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mellit, A., Tina, G.M., Kalogirou, S.A.: Fault detection and diagnosis methods for photovoltaic systems: a review. Renew. Sustain. Energy Rev. 91, 1–17 (2018)CrossRef Mellit, A., Tina, G.M., Kalogirou, S.A.: Fault detection and diagnosis methods for photovoltaic systems: a review. Renew. Sustain. Energy Rev. 91, 1–17 (2018)CrossRef
2.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Technical provision of diagnostic systems. In: Diagnostic Systems for Energy Equipments, pp. 91–133 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Technical provision of diagnostic systems. In: Diagnostic Systems for Energy Equipments, pp. 91–133 (2020)
3.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for standardless measurements of the composite materials characteristics. In: Models and Measures in Measurements and Monitoring, pp. 157–190 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for standardless measurements of the composite materials characteristics. In: Models and Measures in Measurements and Monitoring, pp. 157–190 (2021)
4.
go back to reference Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11s. In: Systems, Decision and Control in Energy II, pp. 141–151. Springer International Publishing, Cham (2021) Zaporozhets, A., Babak, V., Sverdlova, A., Isaienko, V., Babikova, K.: Development of a system for diagnosing heat power equipment based on IEEE 802.11s. In: Systems, Decision and Control in Energy II, pp. 141–151. Springer International Publishing, Cham (2021)
5.
go back to reference Chen, H., Jiang, B., Ding, S.X., Huang, B.: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 23(3), 1700–1716 (2020)CrossRef Chen, H., Jiang, B., Ding, S.X., Huang, B.: Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives. IEEE Trans. Intell. Transp. Syst. 23(3), 1700–1716 (2020)CrossRef
6.
go back to reference Coakley, D., Raftery, P., Keane, M.: A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 37, 123–141 (2014)CrossRef Coakley, D., Raftery, P., Keane, M.: A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 37, 123–141 (2014)CrossRef
7.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. In: Diagnostic Systems for Energy Equipments, pp. 71–90 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Simulation and software for diagnostic systems. In: Diagnostic Systems for Energy Equipments, pp. 71–90 (2020)
8.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Diagnostic Systems for Energy Equipments, pp. 23–70 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Methods and models for information data analysis. In: Diagnostic Systems for Energy Equipments, pp. 23–70 (2020)
9.
go back to reference Vogl, G.W., Weiss, B.A., Helu, M.: A review of diagnostic and prognostic capabilities and best practices for manufacturing. J. Intell. Manuf. 30, 79–95 (2019)CrossRef Vogl, G.W., Weiss, B.A., Helu, M.: A review of diagnostic and prognostic capabilities and best practices for manufacturing. J. Intell. Manuf. 30, 79–95 (2019)CrossRef
10.
go back to reference Triki-Lahiani, A., Abdelghani, A.B.B., Slama-Belkhodja, I.: Fault detection and monitoring systems for photovoltaic installations: a review. Renew. Sustain. Energy Rev. 82, 2680–2692 (2018)CrossRef Triki-Lahiani, A., Abdelghani, A.B.B., Slama-Belkhodja, I.: Fault detection and monitoring systems for photovoltaic installations: a review. Renew. Sustain. Energy Rev. 82, 2680–2692 (2018)CrossRef
11.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022, December) Babak, V., Zaporozhets, A., Kuts, Y., Myslovych, M., Fryz, M., Scherbak, L.: Models and characteristics of identification of noise stochastic signals of research objects. In: CEUR Workshop Proceedings, vol. 3309, pp. 349–362 (2022, December)
12.
go back to reference Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021, December) Babak, V., Scherbak, L., Kuts, Y., Zaporozhets, A.: Information and measurement technologies for solving problems of energy informatics. In: The 1st International Workshop on Information Technologies: Theoretical and Applied Problems 2021. CEUR Workshop Proceedings, vol. 3039, pp. 24–31 (2021, December)
13.
go back to reference Theunissen, F.E., Elie, J.E.: Neural processing of natural sounds. Nat. Rev. Neurosci. 15(6), 355–366 (2014)CrossRef Theunissen, F.E., Elie, J.E.: Neural processing of natural sounds. Nat. Rev. Neurosci. 15(6), 355–366 (2014)CrossRef
14.
go back to reference Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRef Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRef
15.
go back to reference Yuan, F.: Design techniques for time-mode noise-shaping analog-to-digital converters: a state-of-the-art review. Analog Integr. Circ. Sig. Process 79, 191–206 (2014)CrossRef Yuan, F.: Design techniques for time-mode noise-shaping analog-to-digital converters: a state-of-the-art review. Analog Integr. Circ. Sig. Process 79, 191–206 (2014)CrossRef
16.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for the diagnosis of electric power equipment. In: Models and Measures in Measurements and Monitoring, pp. 99–126 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for the diagnosis of electric power equipment. In: Models and Measures in Measurements and Monitoring, pp. 99–126 (2021)
17.
go back to reference Zheng, Y., Zhao, Y., Zhou, N., Wang, H., Jiang, D.: A short review of some analog-to-digital converters resolution enhancement methods. Measurement 180, 109554 (2021)CrossRef Zheng, Y., Zhao, Y., Zhou, N., Wang, H., Jiang, D.: A short review of some analog-to-digital converters resolution enhancement methods. Measurement 180, 109554 (2021)CrossRef
18.
go back to reference Li, D., Zhao, X., Liu, S., Liu, M., Ding, R., Liang, Y., Zhu, Z.: Radio frequency analog-to-digital converters: Systems and circuits review. Microelectron. J. 119, 105331 (2022)CrossRef Li, D., Zhao, X., Liu, S., Liu, M., Ding, R., Liang, Y., Zhu, Z.: Radio frequency analog-to-digital converters: Systems and circuits review. Microelectron. J. 119, 105331 (2022)CrossRef
19.
go back to reference Gao, Z., Liu, X.: An overview on fault diagnosis, prognosis and resilient control for wind turbine systems. Processes 9(2), 300 (2021)MathSciNetCrossRef Gao, Z., Liu, X.: An overview on fault diagnosis, prognosis and resilient control for wind turbine systems. Processes 9(2), 300 (2021)MathSciNetCrossRef
20.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. In: Models and Measures in Measurements and Monitoring, pp. 1–31 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Problems and features of measurements. In: Models and Measures in Measurements and Monitoring, pp. 1–31 (2021)
21.
go back to reference Hare, J., Shi, X., Gupta, S., Bazzi, A.: Fault diagnostics in smart micro-grids: a survey. Renew. Sustain. Energy Rev. 60, 1114–1124 (2016)CrossRef Hare, J., Shi, X., Gupta, S., Bazzi, A.: Fault diagnostics in smart micro-grids: a survey. Renew. Sustain. Energy Rev. 60, 1114–1124 (2016)CrossRef
22.
go back to reference Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89(1), 015004 (2017)MathSciNetCrossRef Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89(1), 015004 (2017)MathSciNetCrossRef
23.
go back to reference James, F., Moneta, L.: Review of high-quality random number generators. Comput. Softw. Big Sci. 4, 1–12 (2020)CrossRef James, F., Moneta, L.: Review of high-quality random number generators. Comput. Softw. Big Sci. 4, 1–12 (2020)CrossRef
24.
go back to reference Yu, F., Li, L., Tang, Q., Cai, S., Song, Y., Xu, Q.: A survey on true random number generators based on chaos. Discret. Dyn. Nat. Soc. 2019, 1–10 (2019)MathSciNet Yu, F., Li, L., Tang, Q., Cai, S., Song, Y., Xu, Q.: A survey on true random number generators based on chaos. Discret. Dyn. Nat. Soc. 2019, 1–10 (2019)MathSciNet
25.
go back to reference Kaur, S., Gupta, D.: A review of image encryption schemes based on the chaotic map. Int. J. Comput. Technol. Appl. 5(1), 144 (2014) Kaur, S., Gupta, D.: A review of image encryption schemes based on the chaotic map. Int. J. Comput. Technol. Appl. 5(1), 144 (2014)
26.
go back to reference Sundararajan, A.D.D., Rajashree, R.: A comprehensive survey on lightweight asymmetric key cryptographic algorithm for resource constrained devices. ECS Trans. 107(1), 7457 (2022)CrossRef Sundararajan, A.D.D., Rajashree, R.: A comprehensive survey on lightweight asymmetric key cryptographic algorithm for resource constrained devices. ECS Trans. 107(1), 7457 (2022)CrossRef
27.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for measuring random angular quantities. In: Models and Measures in Measurements and Monitoring, pp. 61–97 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models and measures for measuring random angular quantities. In: Models and Measures in Measurements and Monitoring, pp. 61–97 (2021)
28.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models of measuring signals and fields. In: Models and Measures in Measurements and Monitoring, pp. 33–59 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Models of measuring signals and fields. In: Models and Measures in Measurements and Monitoring, pp. 33–59 (2021)
29.
go back to reference Salles, R., Belloze, K., Porto, F., Gonzalez, P.H., Ogasawara, E.: Nonstationary time series transformation methods: an experimental review. Knowl.-Based Syst. 164, 274–291 (2019)CrossRef Salles, R., Belloze, K., Porto, F., Gonzalez, P.H., Ogasawara, E.: Nonstationary time series transformation methods: an experimental review. Knowl.-Based Syst. 164, 274–291 (2019)CrossRef
30.
go back to reference Turitsyn, S.K., Prilepsky, J.E., Le, S.T., Wahls, S., Frumin, L.L., Kamalian, M., Derevyanko, S.A.: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4(3), 307–322 (2017)CrossRef Turitsyn, S.K., Prilepsky, J.E., Le, S.T., Wahls, S., Frumin, L.L., Kamalian, M., Derevyanko, S.A.: Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4(3), 307–322 (2017)CrossRef
31.
go back to reference Schneider, M.: A review of nonlinear FFT-based computational homogenization methods. Acta Mech. 232(6), 2051–2100 (2021)MathSciNetCrossRef Schneider, M.: A review of nonlinear FFT-based computational homogenization methods. Acta Mech. 232(6), 2051–2100 (2021)MathSciNetCrossRef
32.
go back to reference Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef Zaporozhets, A.O.: Correlation analysis between the components of energy balance and pollutant emissions. Water Air Soil Pollut. 232, 1–22 (2021)CrossRef
33.
go back to reference Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. In: Diagnostic Systems for Energy Equipments, pp. 1–22 (2020) Babak, V.P., Babak, S.V., Myslovych, M.V., Zaporozhets, A.O., Zvaritch, V.M.: Principles of construction of systems for diagnosing the energy equipment. In: Diagnostic Systems for Energy Equipments, pp. 1–22 (2020)
34.
go back to reference Ding, S.X.: Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems, pp. 117–199. Springer London, London (2014) Ding, S.X.: Data-Driven Design of Fault Diagnosis and Fault-Tolerant Control Systems, pp. 117–199. Springer London, London (2014)
35.
go back to reference Chen, Z., Ding, S.X., Peng, T., Yang, C., Gui, W.: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms. IEEE Trans. Industr. Electron. 65(2), 1559–1567 (2017)CrossRef Chen, Z., Ding, S.X., Peng, T., Yang, C., Gui, W.: Fault detection for non-Gaussian processes using generalized canonical correlation analysis and randomized algorithms. IEEE Trans. Industr. Electron. 65(2), 1559–1567 (2017)CrossRef
36.
go back to reference Dey, S., Dey, T., Kundu, D.: Two-parameter Rayleigh distribution: different methods of estimation. Am. J. Math. Manag. Sci. 33(1), 55–74 (2014) Dey, S., Dey, T., Kundu, D.: Two-parameter Rayleigh distribution: different methods of estimation. Am. J. Math. Manag. Sci. 33(1), 55–74 (2014)
37.
go back to reference Bidaoui, H., El Abbassi, I., El Bouardi, A., Darcherif, A.: Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco. Procedia Manuf. 32, 786–793 (2019)CrossRef Bidaoui, H., El Abbassi, I., El Bouardi, A., Darcherif, A.: Wind speed data analysis using Weibull and Rayleigh distribution functions, case study: five cities northern Morocco. Procedia Manuf. 32, 786–793 (2019)CrossRef
38.
go back to reference Gomes, A.E., da-Silva, C.Q., Cordeiro, G.M., Ortega, E.M.: A new lifetime model: the Kumaraswamy generalized Rayleigh distribution. J. Stat. Comput. Simul. 84(2), 290–309 (2014) Gomes, A.E., da-Silva, C.Q., Cordeiro, G.M., Ortega, E.M.: A new lifetime model: the Kumaraswamy generalized Rayleigh distribution. J. Stat. Comput. Simul. 84(2), 290–309 (2014)
39.
go back to reference Eamaz, A., Yeganegi, F., Soltanalian, M.: Modified arcsine law for one-bit sampled stationary signals with time-varying thresholds. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5459–5463. IEEE (2021, June) Eamaz, A., Yeganegi, F., Soltanalian, M.: Modified arcsine law for one-bit sampled stationary signals with time-varying thresholds. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5459–5463. IEEE (2021, June)
40.
go back to reference Eamaz, A., Yeganegi, F., Soltanalian, M.: Covariance recovery for one-bit sampled stationary signals with time-varying sampling thresholds. Signal Process. 206, 108899 (2023)CrossRef Eamaz, A., Yeganegi, F., Soltanalian, M.: Covariance recovery for one-bit sampled stationary signals with time-varying sampling thresholds. Signal Process. 206, 108899 (2023)CrossRef
41.
go back to reference Eamaz, A., Yeganegi, F., Soltanalian, M.: Covariance recovery for one-bit sampled non-stationary signals with time-varying sampling thresholds. IEEE Trans. Signal Process. 70, 5222–5236 (2022)MathSciNetCrossRef Eamaz, A., Yeganegi, F., Soltanalian, M.: Covariance recovery for one-bit sampled non-stationary signals with time-varying sampling thresholds. IEEE Trans. Signal Process. 70, 5222–5236 (2022)MathSciNetCrossRef
42.
go back to reference Majumder, S.: One-bit spectrum sensing using Gustafson-Kessel fuzzy clustering for cognitive radio network. Phys. Commun. 62, 102239 (2024)CrossRef Majumder, S.: One-bit spectrum sensing using Gustafson-Kessel fuzzy clustering for cognitive radio network. Phys. Commun. 62, 102239 (2024)CrossRef
43.
go back to reference Kwak, S.G., Kim, J.H.: Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 70(2), 144 (2017)CrossRef Kwak, S.G., Kim, J.H.: Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 70(2), 144 (2017)CrossRef
44.
go back to reference Li, X., Ding, P.: General forms of finite population central limit theorems with applications to causal inference. J. Am. Stat. Assoc. 112(520), 1759–1769 (2017)MathSciNetCrossRef Li, X., Ding, P.: General forms of finite population central limit theorems with applications to causal inference. J. Am. Stat. Assoc. 112(520), 1759–1769 (2017)MathSciNetCrossRef
45.
go back to reference Heyde, C.C.: Central limit theorem. In: Wiley StatsRef: Statistics Reference Online (2014) Heyde, C.C.: Central limit theorem. In: Wiley StatsRef: Statistics Reference Online (2014)
46.
go back to reference Levin, K., Athreya, A., Tang, M., Lyzinski, V., Priebe, C.E.: A central limit theorem for an omnibus embedding of multiple random dot product graphs. In: 2017 IEEE international conference on data mining workshops (ICDMW), pp. 964–967. IEEE (2017, November) Levin, K., Athreya, A., Tang, M., Lyzinski, V., Priebe, C.E.: A central limit theorem for an omnibus embedding of multiple random dot product graphs. In: 2017 IEEE international conference on data mining workshops (ICDMW), pp. 964–967. IEEE (2017, November)
47.
go back to reference Liu, H., Ren, J., Yang, Y.: Randomization-based joint central limit theorem and efficient covariate adjustment in randomized block 2 k factorial experiments. J. Am. Stat. Assoc. 119(545), 136–150 (2024)MathSciNetCrossRef Liu, H., Ren, J., Yang, Y.: Randomization-based joint central limit theorem and efficient covariate adjustment in randomized block 2 k factorial experiments. J. Am. Stat. Assoc. 119(545), 136–150 (2024)MathSciNetCrossRef
48.
go back to reference Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach. Wiley (2014) Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach. Wiley (2014)
49.
go back to reference Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Publications (2023) Kline, R.B.: Principles and Practice of Structural Equation Modeling. Guilford Publications (2023)
50.
go back to reference Wang, W., Den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)CrossRef Wang, W., Den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)CrossRef
51.
go back to reference Najafzadeh, N., Fotouhi, M., Kasaei, S.: Object tracking using Kalman filter with adaptive sampled histogram. In: 2015 23rd Iranian Conference on Electrical Engineering, pp. 781–786. IEEE (2015, May) Najafzadeh, N., Fotouhi, M., Kasaei, S.: Object tracking using Kalman filter with adaptive sampled histogram. In: 2015 23rd Iranian Conference on Electrical Engineering, pp. 781–786. IEEE (2015, May)
52.
go back to reference Jawaid, A., Seewig, J.: Discrete filter and non-gaussian noise for fast roughness simulations with gaussian processes. In: International Research Training Group Conference on Physical Modeling for Virtual Manufacturing Systems and Processes, pp. 1–15. Springer International Publishing, Cham (2023, June) Jawaid, A., Seewig, J.: Discrete filter and non-gaussian noise for fast roughness simulations with gaussian processes. In: International Research Training Group Conference on Physical Modeling for Virtual Manufacturing Systems and Processes, pp. 1–15. Springer International Publishing, Cham (2023, June)
53.
go back to reference Akashi, F., Liu, Y., Taniguchi, M.: An Empirical Likelihood Approach for Symmetric α-Stable Processes (2015) Akashi, F., Liu, Y., Taniguchi, M.: An Empirical Likelihood Approach for Symmetric α-Stable Processes (2015)
54.
go back to reference Choi, B., Bergés, M., Bou-Zeid, E., Pozzi, M.: Short-term probabilistic forecasting of meso-scale near-surface urban temperature fields. Environ Model Softw. 145, 105189 (2021)CrossRef Choi, B., Bergés, M., Bou-Zeid, E., Pozzi, M.: Short-term probabilistic forecasting of meso-scale near-surface urban temperature fields. Environ Model Softw. 145, 105189 (2021)CrossRef
55.
go back to reference Sause, M.G., Richler, S.: Finite element modelling of cracks as acoustic emission sources. J. Nondestr. Eval. 34, 1–13 (2015)CrossRef Sause, M.G., Richler, S.: Finite element modelling of cracks as acoustic emission sources. J. Nondestr. Eval. 34, 1–13 (2015)CrossRef
56.
go back to reference Zhao, L., Kang, L., Yao, S.: Research and application of acoustic emission signal processing technology. IEEE Access 7, 984–993 (2018)CrossRef Zhao, L., Kang, L., Yao, S.: Research and application of acoustic emission signal processing technology. IEEE Access 7, 984–993 (2018)CrossRef
57.
go back to reference Nazarchuk, Z., Skalskyi, V., Serhiyenko, O.: Acoustic emission. In: Foundations of Engineering Mechanics (2017) Nazarchuk, Z., Skalskyi, V., Serhiyenko, O.: Acoustic emission. In: Foundations of Engineering Mechanics (2017)
58.
go back to reference Crandall, S.H., Mark, W.D.: Random Vibration in Mechanical Systems. Academic Press (2014) Crandall, S.H., Mark, W.D.: Random Vibration in Mechanical Systems. Academic Press (2014)
59.
go back to reference Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023) Babak, V., Zaporozhets, A., Kovtun, S., Myslovych, M., Kuts, Y., Scherbak, L.: Information support for identification of the technical state of electric power facilities. In: Systems, Decision and Control in Energy V, pp. 129–153. Springer Nature Switzerland, Cham (2023)
60.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L., Eremenko, V.: Application of material measure in measurements: theoretical aspects. In: Systems, Decision and Control in Energy II, pp. 261–269. Springer International Publishing, Cham (2021)CrossRef
61.
go back to reference Lee, H.J., Zhang, S., Bar-Cohen, Y., Sherrit, S.: High temperature, high power piezoelectric composite transducers. Sensors 14(8), 14526–14552 (2014)CrossRef Lee, H.J., Zhang, S., Bar-Cohen, Y., Sherrit, S.: High temperature, high power piezoelectric composite transducers. Sensors 14(8), 14526–14552 (2014)CrossRef
62.
go back to reference Wang, P., Wang, Z., Youn, B.D., Lee, S.: Reliability-based robust design of smart sensing systems for failure diagnostics using piezoelectric materials. Comput. Struct. 156, 110–121 (2015)CrossRef Wang, P., Wang, Z., Youn, B.D., Lee, S.: Reliability-based robust design of smart sensing systems for failure diagnostics using piezoelectric materials. Comput. Struct. 156, 110–121 (2015)CrossRef
63.
go back to reference Babak, V., Bohachev, I., Zaporozhets, A., Khaidurov, V., Havrysh, V., Kalinichenko, A.: Some features of modeling ultrasound propagation in non-destructive control of metal structures based on the magnetostrictive effect. Electronics 12(3), 477 (2023)CrossRef Babak, V., Bohachev, I., Zaporozhets, A., Khaidurov, V., Havrysh, V., Kalinichenko, A.: Some features of modeling ultrasound propagation in non-destructive control of metal structures based on the magnetostrictive effect. Electronics 12(3), 477 (2023)CrossRef
64.
go back to reference An, Y.K., Kim, M., Sohn, H.: Piezoelectric transducers for assessing and monitoring civil infrastructures. In: Sensor technologies for civil infrastructures, pp. 86–120. Woodhead Publishing (2014) An, Y.K., Kim, M., Sohn, H.: Piezoelectric transducers for assessing and monitoring civil infrastructures. In: Sensor technologies for civil infrastructures, pp. 86–120. Woodhead Publishing (2014)
65.
go back to reference Jiang, X., Zhang, X., Tang, T., Zhang, Y.: Electromechanical impedance based self-diagnosis of piezoelectric smart structure using principal component analysis and LibSVM. Sci. Rep. 11(1), 11345 (2021)CrossRef Jiang, X., Zhang, X., Tang, T., Zhang, Y.: Electromechanical impedance based self-diagnosis of piezoelectric smart structure using principal component analysis and LibSVM. Sci. Rep. 11(1), 11345 (2021)CrossRef
66.
go back to reference Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, V.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 45(11), 1514–1533 (2017)CrossRef Gómez-Aguilar, J.F., Atangana, A., Morales-Delgado, V.F.: Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives. Int. J. Circuit Theory Appl. 45(11), 1514–1533 (2017)CrossRef
67.
go back to reference Sarafraz, M.S., Tavazoei, M.S.: Passive realization of fractional-order impedances by a fractional element and RLC components: Conditions and procedure. IEEE Trans. Circuits Syst. I Regul. Pap. 64(3), 585–595 (2016)CrossRef Sarafraz, M.S., Tavazoei, M.S.: Passive realization of fractional-order impedances by a fractional element and RLC components: Conditions and procedure. IEEE Trans. Circuits Syst. I Regul. Pap. 64(3), 585–595 (2016)CrossRef
68.
go back to reference Sarafraz, M.S., Tavazoei, M.S.: Realizability of fractional-order impedances by passive electrical networks composed of a fractional capacitor and RLC components. IEEE Trans. Circuits Syst. I Regul. Pap. 62(12), 2829–2835 (2015)MathSciNetCrossRef Sarafraz, M.S., Tavazoei, M.S.: Realizability of fractional-order impedances by passive electrical networks composed of a fractional capacitor and RLC components. IEEE Trans. Circuits Syst. I Regul. Pap. 62(12), 2829–2835 (2015)MathSciNetCrossRef
69.
go back to reference Ugwiri, M.A., Carratú, M., Paciello, V., Liguori, C.: Benefits of enhanced techniques combining negentropy, spectral correlation and kurtogram for bearing fault diagnosis. Measurement 185, 110013 (2021)CrossRef Ugwiri, M.A., Carratú, M., Paciello, V., Liguori, C.: Benefits of enhanced techniques combining negentropy, spectral correlation and kurtogram for bearing fault diagnosis. Measurement 185, 110013 (2021)CrossRef
70.
go back to reference Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L.: Some features of Hilbert transform and their use in energy informatics. Probl. Gener. Energy 1–2 (2022) Babak, V., Zaporozhets, A., Kuts, Y., Scherbak, L.: Some features of Hilbert transform and their use in energy informatics. Probl. Gener. Energy 1–2 (2022)
71.
go back to reference Tang, G., Tian, T.: Compound fault diagnosis of rolling bearing based on singular negentropy difference spectrum and integrated fast spectral correlation. Entropy 22(3), 367 (2020)MathSciNetCrossRef Tang, G., Tian, T.: Compound fault diagnosis of rolling bearing based on singular negentropy difference spectrum and integrated fast spectral correlation. Entropy 22(3), 367 (2020)MathSciNetCrossRef
72.
go back to reference Mauricio, A., Gryllias, K.: Bearing diagnostics using kurtosis spectral correlation based on cyclic modulation spectrum estimation. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, p. V002T05A025. American Society of Mechanical Engineers (2022, June) Mauricio, A., Gryllias, K.: Bearing diagnostics using kurtosis spectral correlation based on cyclic modulation spectrum estimation. In: Turbo Expo: Power for Land, Sea, and Air, vol. 85987, p. V002T05A025. American Society of Mechanical Engineers (2022, June)
73.
go back to reference Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef Babak, V., Zaporozhets, A., Zvaritch, V., Scherbak, L., Myslovych, M., Kuts, Y.: Models and measures in theory and practice of manufacturing processes. IFAC-PapersOnLine 55(10), 1956–1961 (2022)CrossRef
74.
go back to reference Jondral, F.K.: White gaussian noise–models for engineers. Frequenz 72(5–6), 293–299 (2018)CrossRef Jondral, F.K.: White gaussian noise–models for engineers. Frequenz 72(5–6), 293–299 (2018)CrossRef
75.
go back to reference Han, Y., Jiao, J., Mukherjee, R.: On estimation of L r-norms in Gaussian white noise models. Probab. Theory Relat. Fields 177(3), 1243–1294 (2020)MathSciNetCrossRef Han, Y., Jiao, J., Mukherjee, R.: On estimation of L r-norms in Gaussian white noise models. Probab. Theory Relat. Fields 177(3), 1243–1294 (2020)MathSciNetCrossRef
76.
go back to reference Waubke, H., Kasess, C.H.: Gaussian closure technique applied to the hysteretic Bouc model with non-zero mean white noise excitation. J. Sound Vib. 382, 258–273 (2016)CrossRef Waubke, H., Kasess, C.H.: Gaussian closure technique applied to the hysteretic Bouc model with non-zero mean white noise excitation. J. Sound Vib. 382, 258–273 (2016)CrossRef
77.
go back to reference Sørbye, S.H., Rue, H.: Fractional Gaussian noise: Prior specification and model comparison. Environmetrics 29(5–6), e2457 (2018)MathSciNetCrossRef Sørbye, S.H., Rue, H.: Fractional Gaussian noise: Prior specification and model comparison. Environmetrics 29(5–6), e2457 (2018)MathSciNetCrossRef
78.
go back to reference Abreu, L.D.: Local maxima of white noise spectrograms and Gaussian Entire Functions. J. Fourier Anal. Appl. 28(6), 88 (2022)MathSciNetCrossRef Abreu, L.D.: Local maxima of white noise spectrograms and Gaussian Entire Functions. J. Fourier Anal. Appl. 28(6), 88 (2022)MathSciNetCrossRef
79.
go back to reference Hvozdeva, I., Myrhorod, V., Budashko, V., Shevchenko, V.: Problems of improving the diagnostic systems of marine diesel generator sets. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 350–354. IEEE (2020, February) Hvozdeva, I., Myrhorod, V., Budashko, V., Shevchenko, V.: Problems of improving the diagnostic systems of marine diesel generator sets. In: 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET), pp. 350–354. IEEE (2020, February)
80.
go back to reference Onishchenko, O.A., Melnyk, O.M., Yarovenko, V.A., Aleksandrovska, N.I., Kurdiuk, S.V., Parmenova, D.G., Storchak, O.O.: Study of efficiency and advancement of marine engine oil purification and filtration technologies. J. Chem. Technol. 31(4), 762–774 (2023) Onishchenko, O.A., Melnyk, O.M., Yarovenko, V.A., Aleksandrovska, N.I., Kurdiuk, S.V., Parmenova, D.G., Storchak, O.O.: Study of efficiency and advancement of marine engine oil purification and filtration technologies. J. Chem. Technol. 31(4), 762–774 (2023)
81.
go back to reference Zacharewicz, M., Kniaziewicz, T.: Method of evaluation of the technical condition of the Diesel-electric unit. Diagnostyka 20(2), 113–119 (2019)CrossRef Zacharewicz, M., Kniaziewicz, T.: Method of evaluation of the technical condition of the Diesel-electric unit. Diagnostyka 20(2), 113–119 (2019)CrossRef
82.
go back to reference Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Examples of using models and measures on the circle. In: Models and Measures in Measurements and Monitoring, pp. 127–156 (2021) Babak, V.P., Babak, S.V., Eremenko, V.S., Kuts, Y.V., Myslovych, M.V., Scherbak, L.M., Zaporozhets, A.O.: Examples of using models and measures on the circle. In: Models and Measures in Measurements and Monitoring, pp. 127–156 (2021)
83.
go back to reference Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Pineda-Sanchez, M.: Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime. IEEE Trans. Instrum. Meas. 66(3), 432–440 (2017)CrossRef Burriel-Valencia, J., Puche-Panadero, R., Martinez-Roman, J., Sapena-Bano, A., Pineda-Sanchez, M.: Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime. IEEE Trans. Instrum. Meas. 66(3), 432–440 (2017)CrossRef
84.
go back to reference Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef Zaporozhets, A., Redko, O., Babak, V., Eremenko, V., Mokiychuk, V.: Method of indirect measurement of oxygen concentration in the air. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, 105–114 (2018)CrossRef
85.
go back to reference Zaporozhets, A.O., Khaidurov, V.V.: Mathematical models of inverse problems for finding the main characteristics of air pollution sources. Water Air Soil Pollut. 231(12), 563 (2020)CrossRef Zaporozhets, A.O., Khaidurov, V.V.: Mathematical models of inverse problems for finding the main characteristics of air pollution sources. Water Air Soil Pollut. 231(12), 563 (2020)CrossRef
86.
go back to reference Lin, H.C., Ye, Y.C., Huang, B.J., Su, J.L.: Bearing vibration detection and analysis using enhanced fast Fourier transform algorithm. Adv. Mech. Eng. 8(10), 1687814016675080 (2016)CrossRef Lin, H.C., Ye, Y.C., Huang, B.J., Su, J.L.: Bearing vibration detection and analysis using enhanced fast Fourier transform algorithm. Adv. Mech. Eng. 8(10), 1687814016675080 (2016)CrossRef
87.
go back to reference Khadersab, A., Shivakumar, S.: Vibration analysis techniques for rotating machinery and its effect on bearing faults. Procedia Manuf. 20, 247–252 (2018)CrossRef Khadersab, A., Shivakumar, S.: Vibration analysis techniques for rotating machinery and its effect on bearing faults. Procedia Manuf. 20, 247–252 (2018)CrossRef
Metadata
Title
Simulation of Diagnostic Signals of Electric Equipment
Authors
Vitalii Babak
Sergii Babak
Artur Zaporozhets
Copyright Year
2025
DOI
https://doi.org/10.1007/978-3-031-76253-6_6