Skip to main content
Top
Published in: Tribology Letters 3/2018

01-09-2018 | Original Paper

Simulation of Sinuous Flow in Metal Cutting

Authors: A. S. Vandana, Narayan K. Sundaram

Published in: Tribology Letters | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sinuous flow is a recently discovered mode of unsteady plastic flow in the cutting of metal involving large plastic strains, extensive material folding, and consequences ranging from paradoxically large cutting forces to poor surface finish. Here we use full-scale simulations to show how sinuous flow, and the concomitant redundant plastic deformation in cutting, are caused by microstructure-related inhomogeneity. The computations are carried out in a Lagrangian continuum mechanics framework using a simple, but effective, pseudograin model to represent metal as a polycrystalline aggregate. Our simulations successfully capture all experimentally observed aspects of sinuous flow in metals, including highly undulating, non-laminar streaklines of flow in the chip, folds, and mushroom-like features, and severely deformed high aspect ratio grains. The simulations also shed light on the mechanism of sinuous flow, and the effect of deformation geometry, explaining why it is suppressed at high rake angles. We find that folding and sinuous flow can occur even at low friction, for grain sizes as small as 25–50 microns, and at very low-cutting speeds. Our study clearly points at the critical importance of incorporating microstructure in cutting simulations of pure metals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
‘Laminar’ is used here to describe flows in which the streaklines of flow are nearly parallel to each other, with no kinks or vortices. A streakline is the locus of all material points that passed through a given spatial location at some earlier time.
 
Literature
1.
go back to reference Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005) Shaw, M.C.: Metal Cutting Principles. Oxford University Press, Oxford (2005)
2.
go back to reference Challen, J., Oxley, P.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979)CrossRef Challen, J., Oxley, P.: An explanation of the different regimes of friction and wear using asperity deformation models. Wear 53, 229–243 (1979)CrossRef
3.
go back to reference Ernst, H.: Machining of Metals. American Society for Metals, Ohio (1938) Ernst, H.: Machining of Metals. American Society for Metals, Ohio (1938)
4.
go back to reference Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16, 267–275 (1945)CrossRef Merchant, M.E.: Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip. J. Appl. Phys. 16, 267–275 (1945)CrossRef
5.
go back to reference Field, M., Merchant, M.E.: Mechanics of formation of the discontinuous chip in metal cutting. Trans. Am. Soc. Mech. Eng. 71, 421 (1949) Field, M., Merchant, M.E.: Mechanics of formation of the discontinuous chip in metal cutting. Trans. Am. Soc. Mech. Eng. 71, 421 (1949)
6.
go back to reference Nakayama, K.: The formation of saw-toothed chip in metal cutting. Proc. Int. Conf. on Prod. Eng. 1, 572–577 (1974) Nakayama, K.: The formation of saw-toothed chip in metal cutting. Proc. Int. Conf. on Prod. Eng. 1, 572–577 (1974)
7.
go back to reference Viswanathan, K., Udupa, A., Yeung, H., Sagapuram, D., Mann, J.B., Saei, M., Chandrasekar, S.: On the stability of plastic flow in cutting of metals. CIRP Ann. Manuf. Technol. 66, 69–72 (2017)CrossRef Viswanathan, K., Udupa, A., Yeung, H., Sagapuram, D., Mann, J.B., Saei, M., Chandrasekar, S.: On the stability of plastic flow in cutting of metals. CIRP Ann. Manuf. Technol. 66, 69–72 (2017)CrossRef
8.
go back to reference Usui, E., Gujral, A., Shaw, M.C.: An experimental study of the action of CCl4 in cutting and other processes involving plastic flow. Int. J. Mach. Tool D. R. 1, 187–197 (1961)CrossRef Usui, E., Gujral, A., Shaw, M.C.: An experimental study of the action of CCl4 in cutting and other processes involving plastic flow. Int. J. Mach. Tool D. R. 1, 187–197 (1961)CrossRef
9.
go back to reference Williams, J.E., Smart, E.F., Milner, D.R.: Metallurgy of machining. Pt. 1. Basic considerations and the cutting of pure metals. Metallurgia 81, 3–10 (1970) Williams, J.E., Smart, E.F., Milner, D.R.: Metallurgy of machining. Pt. 1. Basic considerations and the cutting of pure metals. Metallurgia 81, 3–10 (1970)
10.
go back to reference Cook, N., Finnie, I., Shaw, M.: Discontinuous chip formation. Trans. ASME 76, 153 (1954) Cook, N., Finnie, I., Shaw, M.: Discontinuous chip formation. Trans. ASME 76, 153 (1954)
11.
go back to reference Komanduri, R., Brown, R.: On the mechanics of chip segmentation in machining. J. Eng. Ind. 103, 33–51 (1981)CrossRef Komanduri, R., Brown, R.: On the mechanics of chip segmentation in machining. J. Eng. Ind. 103, 33–51 (1981)CrossRef
12.
go back to reference Semiatin, S., Rao, S.: Shear localization during metal cutting. Mat. Sci. Eng. 61, 185–192 (1983)CrossRef Semiatin, S., Rao, S.: Shear localization during metal cutting. Mat. Sci. Eng. 61, 185–192 (1983)CrossRef
13.
go back to reference Molinari, A., Soldani, X., Miguélez, M.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 61, 2331–2359 (2013)CrossRef Molinari, A., Soldani, X., Miguélez, M.: Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al-4V. J. Mech. Phys. Solids 61, 2331–2359 (2013)CrossRef
14.
go back to reference Yeung, H., Viswanathan, K., Compton, W.D., Chandrasekar, S.: Sinuous flow in metals. Proc. Nat. Acad. Sci. USA 112, 9828–9832 (2015)CrossRef Yeung, H., Viswanathan, K., Compton, W.D., Chandrasekar, S.: Sinuous flow in metals. Proc. Nat. Acad. Sci. USA 112, 9828–9832 (2015)CrossRef
15.
go back to reference Trent, E.M., Wright, P.K.: Metal Cutting. Butterworth-Heinemann, Oxford (2000) Trent, E.M., Wright, P.K.: Metal Cutting. Butterworth-Heinemann, Oxford (2000)
16.
go back to reference Udupa, A., Viswanathan, K., Ho, Y., Chandrasekar, S.: The cutting of metals via plastic buckling. Proc. R. Soc. A 473, 20160863 (2017)CrossRef Udupa, A., Viswanathan, K., Ho, Y., Chandrasekar, S.: The cutting of metals via plastic buckling. Proc. R. Soc. A 473, 20160863 (2017)CrossRef
17.
go back to reference Ramalingam, S., Doyle, E., Turley, D.: On chip curl in orthogonal machining. J. Eng. Ind. 102, 177–183 (1980)CrossRef Ramalingam, S., Doyle, E., Turley, D.: On chip curl in orthogonal machining. J. Eng. Ind. 102, 177–183 (1980)CrossRef
18.
go back to reference Komanduri, R., Von Turkovich B.F.: New observations on the mechanism of chip formation when machining titanium alloys. Wear 69, 179–188 (1981)CrossRef Komanduri, R., Von Turkovich B.F.: New observations on the mechanism of chip formation when machining titanium alloys. Wear 69, 179–188 (1981)CrossRef
19.
go back to reference Sundaram, N.K., Guo, Y., Chandrasekar, S.: Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys. Rev. Lett. 109, 106001 (2012)CrossRef Sundaram, N.K., Guo, Y., Chandrasekar, S.: Mesoscale folding, instability, and disruption of laminar flow in metal surfaces. Phys. Rev. Lett. 109, 106001 (2012)CrossRef
20.
go back to reference Vandana, A.S., Sundaram, N.K.: Interaction of a sliding wedge with a metallic substrate containing a single inhomogeneity. Trib. Lett. 65, 124 (2017)CrossRef Vandana, A.S., Sundaram, N.K.: Interaction of a sliding wedge with a metallic substrate containing a single inhomogeneity. Trib. Lett. 65, 124 (2017)CrossRef
21.
go back to reference Sundaram, N.K., Mahato, A., Guo, Y., Viswanathan, K., Chandrasekar, S.: Folding in metal polycrystals: Microstructural origins and mechanics. Acta Mater. 140C, 67–78 (2017)CrossRef Sundaram, N.K., Mahato, A., Guo, Y., Viswanathan, K., Chandrasekar, S.: Folding in metal polycrystals: Microstructural origins and mechanics. Acta Mater. 140C, 67–78 (2017)CrossRef
22.
go back to reference Strenkowski, J.S., Carroll, J.T.: A finite element model of orthogonal metal cutting. J. Eng. Ind. 107, 349–354 (1985)CrossRef Strenkowski, J.S., Carroll, J.T.: A finite element model of orthogonal metal cutting. J. Eng. Ind. 107, 349–354 (1985)CrossRef
23.
go back to reference Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Meth. Eng. 38, 3675–3694 (1995)CrossRef Marusich, T., Ortiz, M.: Modelling and simulation of high-speed machining. Int. J. Numer. Meth. Eng. 38, 3675–3694 (1995)CrossRef
24.
go back to reference Chuzhoy, L., DeVor, R., Kapoor, S., Bammann, D.: Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng. 124, 162–169 (2002)CrossRef Chuzhoy, L., DeVor, R., Kapoor, S., Bammann, D.: Microstructure-level modeling of ductile iron machining. J. Manuf. Sci. Eng. 124, 162–169 (2002)CrossRef
25.
go back to reference Chuzhoy, L., DeVor, R., Kapoor, S.: Machining simulation of ductile iron and its constituents, Part 2: Numerical simulation and experimental validation of machining. J. Manuf. Sci. Eng. 125, 192–201 (2003)CrossRef Chuzhoy, L., DeVor, R., Kapoor, S.: Machining simulation of ductile iron and its constituents, Part 2: Numerical simulation and experimental validation of machining. J. Manuf. Sci. Eng. 125, 192–201 (2003)CrossRef
26.
go back to reference Simoneau, E., Ng, Elbestawi, M.: Surface defects during microcutting. Int. J. Mach. Tool. Manuf. 46, 1378–1387 (2006)CrossRef Simoneau, E., Ng, Elbestawi, M.: Surface defects during microcutting. Int. J. Mach. Tool. Manuf. 46, 1378–1387 (2006)CrossRef
27.
go back to reference Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRef Ashby, M.: The deformation of plastically non-homogeneous materials. Philos. Mag. 21, 399–424 (1970)CrossRef
28.
go back to reference Harren, S., Asaro, R.: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)CrossRef Harren, S., Asaro, R.: Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model. J. Mech. Phys. Solids 37, 191–232 (1989)CrossRef
29.
go back to reference Huang, J.M., Black, J.T.: An evaluation of chip separation criteria for the FEM simulation of machining. J. Manuf. Sci. E 118, 545–554 (1996)CrossRef Huang, J.M., Black, J.T.: An evaluation of chip separation criteria for the FEM simulation of machining. J. Manuf. Sci. E 118, 545–554 (1996)CrossRef
30.
go back to reference Subbiah, S., Melkote, S.N.: Evidence of ductile tearing ahead of the cutting tool and modeling the energy consumed in material separation in micro-cutting. J. Eng. Mater. Technol. 129, 321–331 (2007)CrossRef Subbiah, S., Melkote, S.N.: Evidence of ductile tearing ahead of the cutting tool and modeling the energy consumed in material separation in micro-cutting. J. Eng. Mater. Technol. 129, 321–331 (2007)CrossRef
31.
go back to reference Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics 21, 541–547 (1983) Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics 21, 541–547 (1983)
32.
go back to reference Armstrong, P.E., Hockett, J.E., Sherby, O.: Large strain multidirectional deformation of 1100 aluminum at 300 K. J. Mech. Phys. Solids 30, 37–58 (1982)CrossRef Armstrong, P.E., Hockett, J.E., Sherby, O.: Large strain multidirectional deformation of 1100 aluminum at 300 K. J. Mech. Phys. Solids 30, 37–58 (1982)CrossRef
33.
go back to reference Lindholm, U.S.: Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317–335 (1964)CrossRef Lindholm, U.S.: Some experiments with the split Hopkinson pressure bar. J. Mech. Phys. Solids 12, 317–335 (1964)CrossRef
34.
go back to reference Vachhani, S.J., Kalidindi, S.R.: Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)CrossRef Vachhani, S.J., Kalidindi, S.R.: Grain-scale measurement of slip resistances in aluminum polycrystals using spherical nanoindentation. Acta Mater. 90, 27–36 (2015)CrossRef
35.
go back to reference Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. 107, 83–89 (1985) Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. 107, 83–89 (1985)
36.
go back to reference Atkins, A.G.: Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45, 373–396 (2003)CrossRef Atkins, A.G.: Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45, 373–396 (2003)CrossRef
37.
go back to reference Dassault-Systemes: Abaqus Analysis User Manual. Dassault Systemes Simulia Corporation, Providence (2012) Dassault-Systemes: Abaqus Analysis User Manual. Dassault Systemes Simulia Corporation, Providence (2012)
38.
go back to reference Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15, 750–776 (1998)CrossRef Chung, W.J., Cho, J.W., Belytschko, T.: On the dynamic effects of explicit FEM in sheet metal forming analysis. Eng. Comput. 15, 750–776 (1998)CrossRef
39.
go back to reference Melkote, S.N., Grzesik, W., Outeiro, J., Rech, J., Schulze, V., Attia, H., Arrazola, P.-J., MSaoubi, R., Saldana, C.: Advances in material and friction data for modelling of metal machining. CIRP Ann. 66, 731–754 (2017)CrossRef Melkote, S.N., Grzesik, W., Outeiro, J., Rech, J., Schulze, V., Attia, H., Arrazola, P.-J., MSaoubi, R., Saldana, C.: Advances in material and friction data for modelling of metal machining. CIRP Ann. 66, 731–754 (2017)CrossRef
40.
go back to reference Okushima, K., Hitomi, K.: On the Cutting Mechanism for Soft Metals. Mem. Fac. Eng. 19, 135–166 (1957) Okushima, K., Hitomi, K.: On the Cutting Mechanism for Soft Metals. Mem. Fac. Eng. 19, 135–166 (1957)
41.
go back to reference A.Molinari and Moufki, A.: The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. Int. J. Mech. Sci. 50, 124–131 (2008)CrossRef A.Molinari and Moufki, A.: The Merchant’s model of orthogonal cutting revisited: A new insight into the modeling of chip formation. Int. J. Mech. Sci. 50, 124–131 (2008)CrossRef
42.
go back to reference Childs, T.H.C.: Friction modelling in metal cutting. Wear 260, 310–318 (2006)CrossRef Childs, T.H.C.: Friction modelling in metal cutting. Wear 260, 310–318 (2006)CrossRef
43.
go back to reference Hill, R.: The mechanics of machining: A new approach. J. Mech. Phys. Solids 3, 47–53 (1954)CrossRef Hill, R.: The mechanics of machining: A new approach. J. Mech. Phys. Solids 3, 47–53 (1954)CrossRef
44.
go back to reference Dewhurst, P.: On the non-uniqueness of the machining process. Proc. R. Soc. A 360, 587–610 (1978)CrossRef Dewhurst, P.: On the non-uniqueness of the machining process. Proc. R. Soc. A 360, 587–610 (1978)CrossRef
45.
go back to reference Hansen, N., Jensen, D.J.: Development of microstructure in FCC metals during cold work. Philos. Trans. R. Soc. A 357, 1447–1469 (1999)CrossRef Hansen, N., Jensen, D.J.: Development of microstructure in FCC metals during cold work. Philos. Trans. R. Soc. A 357, 1447–1469 (1999)CrossRef
46.
go back to reference Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRef Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 58, 1152–1211 (2010)CrossRef
47.
go back to reference Madhavan, V., Chandrasekar, S., Farris, T.: Machining as a wedge indentation. J. Appl. Mech. 67, 128–139 (2000)CrossRef Madhavan, V., Chandrasekar, S., Farris, T.: Machining as a wedge indentation. J. Appl. Mech. 67, 128–139 (2000)CrossRef
48.
go back to reference Beckmann, N., Romero, P., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014)CrossRef Beckmann, N., Romero, P., Linsler, D., Dienwiebel, M., Stolz, U., Moseler, M., Gumbsch, P.: Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014)CrossRef
49.
go back to reference Li, Szlufarska, I.: How grain size controls friction and wear in nanocrystalline metals. Phys. Rev. B 92, 075418 (2015)CrossRef Li, Szlufarska, I.: How grain size controls friction and wear in nanocrystalline metals. Phys. Rev. B 92, 075418 (2015)CrossRef
50.
go back to reference Guo, Y., M’Saoubi, R., Chandrasekar, S.: Control of deformation levels on machined surfaces. CIRP Ann. 60, 137–140 (2011)CrossRef Guo, Y., M’Saoubi, R., Chandrasekar, S.: Control of deformation levels on machined surfaces. CIRP Ann. 60, 137–140 (2011)CrossRef
51.
go back to reference Komanduri, R., Schroeder, T., Hazra, J., Von Turkovich, B., Flom, D.: On the catastrophic shear instability in high-speed machining of an AISI 4340 steel. J. Eng. Ind. 104, 121–131 (1982)CrossRef Komanduri, R., Schroeder, T., Hazra, J., Von Turkovich, B., Flom, D.: On the catastrophic shear instability in high-speed machining of an AISI 4340 steel. J. Eng. Ind. 104, 121–131 (1982)CrossRef
52.
go back to reference Davies, M.A., Burns, T.J., Evans, C.J.: On the dynamics of chip formation in machining hard metals. CIRP Ann. 46, 25–30 (1997)CrossRef Davies, M.A., Burns, T.J., Evans, C.J.: On the dynamics of chip formation in machining hard metals. CIRP Ann. 46, 25–30 (1997)CrossRef
53.
go back to reference Mann, J., Guo, Y., Saldana, C., Compton, W., Chandrasekar, S.: Enhancing material removal processes using modulation-assisted machining. Tribol. Int. 44, 1225–1235 (2011)CrossRef Mann, J., Guo, Y., Saldana, C., Compton, W., Chandrasekar, S.: Enhancing material removal processes using modulation-assisted machining. Tribol. Int. 44, 1225–1235 (2011)CrossRef
Metadata
Title
Simulation of Sinuous Flow in Metal Cutting
Authors
A. S. Vandana
Narayan K. Sundaram
Publication date
01-09-2018
Publisher
Springer US
Published in
Tribology Letters / Issue 3/2018
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-018-1047-5

Other articles of this Issue 3/2018

Tribology Letters 3/2018 Go to the issue

Premium Partners