Skip to main content
Top
Published in: Physics of Metals and Metallography 7/2021

01-07-2021 | STRENGTH AND PLASTICITY

Simulation of the Dynamics of Changing the Heat Resistance of Nickel Alloys by Machine Learning Methods

Authors: A. G. Tyagunov, D. A. Tarasov, O. B. Mil’der

Published in: Physics of Metals and Metallography | Issue 7/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Data on the nature of changing the heat resistance of nickel alloys, which are used for making the most critical parts, is of great topicality for the design of gas turbine engines of high resource. A model of changing the heat resistance and an analytical expression that makes it possible to determine the thermal stability parameter for each alloy composition are obtained using the machine learning method. The long-term strength limit was estimated and extrapolated using the Larson–Miller temperature–time dependence. The adequacy of the obtained model is confirmed by the satisfactory convergence of the experimental and calculated results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference D. S. Avramenko, “Prediction of the long-term strength of heat resistance of nickel alloys by the method of basic diagrams,” Detali Aerokosmicheskikh Letatel’nykh Apparatov, No. 8, 26–28 (2005). D. S. Avramenko, “Prediction of the long-term strength of heat resistance of nickel alloys by the method of basic diagrams,” Detali Aerokosmicheskikh Letatel’nykh Apparatov, No. 8, 26–28 (2005).
2.
go back to reference M. M. Krivenyuk, “ Long-term strength prediction of high-temperature nickel alloys,” Metall i Lit’e Ukrainy, Nos. 11–12, 20–25 (2009). M. M. Krivenyuk, “ Long-term strength prediction of high-temperature nickel alloys,” Metall i Lit’e Ukrainy, Nos. 11–12, 20–25 (2009).
3.
go back to reference M. Morinaga, N. Yukawa, H. Adachi, and H. Ezaki, “New phacomp and its application to alloy design,” In Superalloys (The Minerals, Metals & Materials Society, 1984), pp. 523–532. M. Morinaga, N. Yukawa, H. Adachi, and H. Ezaki, “New phacomp and its application to alloy design,” In Superalloys (The Minerals, Metals & Materials Society, 1984), pp. 523–532.
4.
go back to reference V. A. Logunov, Yu. N. Shmotin, I. A. Leshchenko, and R. Yu. Starkov, “Modeling and development of new heat-resistant alloys,” Dvigatel’, No. 5, 24–27 (2013). V. A. Logunov, Yu. N. Shmotin, I. A. Leshchenko, and R. Yu. Starkov, “Modeling and development of new heat-resistant alloys,” Dvigatel’, No. 5, 24–27 (2013).
5.
go back to reference E. N. Kablov and N. V. Petrushin, “Computer-aided design of cast heat-resistant nickel alloys,” Casting Heat-Resistant Alloys. The Effect of S.T. Kishkin (Nauka, Moscow, 2006), pp. 56–78. E. N. Kablov and N. V. Petrushin, “Computer-aided design of cast heat-resistant nickel alloys,” Casting Heat-Resistant Alloys. The Effect of S.T. Kishkin (Nauka, Moscow, 2006), pp. 56–78.
6.
go back to reference E. N. Kablov, “Physicochemical and technological features of production of high-temperature rhenium-containing alloys,” Moscow Univ. Chem. Bull. 60, 16–28 (2005). E. N. Kablov, “Physicochemical and technological features of production of high-temperature rhenium-containing alloys,” Moscow Univ. Chem. Bull. 60, 16–28 (2005).
7.
go back to reference A. I. Samoilov, G. I. Morozova, and O. S. Afonicheva, “Analytical method for optimizing alloying of heat-resistant nickel alloys,” Materialoved., No. 2, 14 (2000). A. I. Samoilov, G. I. Morozova, and O. S. Afonicheva, “Analytical method for optimizing alloying of heat-resistant nickel alloys,” Materialoved., No. 2, 14 (2000).
8.
go back to reference D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part I,” Tekhnol. Mater., No. 5, 3–10 (2014). D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part I,” Tekhnol. Mater., No. 5, 3–10 (2014).
9.
go back to reference D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part II,” Tekhnol. Mater., No. 6, 3–10 (2014). D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part II,” Tekhnol. Mater., No. 6, 3–10 (2014).
10.
go back to reference D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part III,” Tekhnol. Mater., No. 7, 3–11 (2014). D. V. Danilov, A. V. Logunov, and Yu. N. Shmotin, “Methodological foundations of computer-aided design of heat-resistant nickel-based alloys Part III,” Tekhnol. Mater., No. 7, 3–11 (2014).
11.
go back to reference K. Firsk and P. W. Gustafson, “An assessment of the Cr–Mo-system”, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 12, 247–254 (1988).CrossRef K. Firsk and P. W. Gustafson, “An assessment of the Cr–Mo-system”, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 12, 247–254 (1988).CrossRef
12.
go back to reference S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano, “Solution-based thermodynamic modeling of the Ni–Ta and NiMo–Ta systems using first-principle calculation,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 631–641 (2009).CrossRef S. H. Zhou, Y. Wang, L. Q. Chen, Z. K. Liu, and R. E. Napolitano, “Solution-based thermodynamic modeling of the Ni–Ta and NiMo–Ta systems using first-principle calculation,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 33, 631–641 (2009).CrossRef
13.
go back to reference L. Pauling, The Nature of the Chemical Bond (Cornell University, 1960. L. Pauling, The Nature of the Chemical Bond (Cornell University, 1960.
14.
go back to reference S. T. Kishkin and E. N. Kablov, Casting Heat-Resistant Alloys for Turbine Blades. Aviation Materials. Fav. Tr. Viam (Anniversary Collection) (MISiS, VIAM, 2002), pp. 48–58 [in Russian]. S. T. Kishkin and E. N. Kablov, Casting Heat-Resistant Alloys for Turbine Blades. Aviation Materials. Fav. Tr. Viam (Anniversary Collection) (MISiS, VIAM, 2002), pp. 48–58 [in Russian].
15.
go back to reference S. Walston, A. Cetel, Kay, R. Mac, K. O’Hara. et al., “Joint development of a fourth generation single crystal superalloy,” in Supralloy (Minerals, Metals & Materials Society, 2004), pp. 15–24. S. Walston, A. Cetel, Kay, R. Mac, K. O’Hara. et al., “Joint development of a fourth generation single crystal superalloy,” in Supralloy (Minerals, Metals & Materials Society, 2004), pp. 15–24.
16.
go back to reference E. N. Kablov, V. N. Toloraya, and N. G. Orehov, “Single-crystal rhenium-bearing nickel alloys for turbine blades of GTE,” Metal Science and Heat Treatment. 44, 274–278 (2002). https://doi.org/10.1023/A:1021247602507 E. N. Kablov, V. N. Toloraya, and N. G. Orehov, “Single-crystal rhenium-bearing nickel alloys for turbine blades of GTE,” Metal Science and Heat Treatment. 44, 274–278 (2002). https://doi.org/10.1023/A:1021247602507
17.
go back to reference S. V. Gaiduk, “Design foundry high-temperature corrosion resistant nickel alloy for the manufacture of turbine blades by the method of directed (mono) crystallization,” Structural and functional materials. New materials and technologies in metallurgy and mechanical engineering, No. 1 (2016) [in Russian]. S. V. Gaiduk, “Design foundry high-temperature corrosion resistant nickel alloy for the manufacture of turbine blades by the method of directed (mono) crystallization,” Structural and functional materials. New materials and technologies in metallurgy and mechanical engineering, No. 1 (2016) [in Russian].
18.
go back to reference E. B. Argimbaeva, O. A. Bazyleva, and E. I. Turenko, “Intermetallic alloys based on Ni3Al,” All Materials. Encyclopedic Reference Book (2012), No. 5 [in Russian]. E. B. Argimbaeva, O. A. Bazyleva, and E. I. Turenko, “Intermetallic alloys based on Ni3Al,” All Materials. Encyclopedic Reference Book (2012), No. 5 [in Russian].
19.
go back to reference E. N. Kablov, Casting Blades of Gas Turbine Engines. Alloys, Technology, Coatings (MISIS, Moscow, 2001) [in Russian]. E. N. Kablov, Casting Blades of Gas Turbine Engines. Alloys, Technology, Coatings (MISIS, Moscow, 2001) [in Russian].
20.
go back to reference E. V. Baburina, Yu. M. Dolzhanskii, B. S. Lomberg, V. N. Chutkina, and V. V. Zorkina, “Structural stability of high-temperature nickel alloys and its improvement by optimal alloying,” Aviatsionnaya Prom-st., No. 5, 62–63 (1987). E. V. Baburina, Yu. M. Dolzhanskii, B. S. Lomberg, V. N. Chutkina, and V. V. Zorkina, “Structural stability of high-temperature nickel alloys and its improvement by optimal alloying,” Aviatsionnaya Prom-st., No. 5, 62–63 (1987).
21.
go back to reference R. R. Larson and J. Miller, “Time-temperature relationship for rupture creep stress,” Trans ASME 74, No. 5, 765–775 (1952). R. R. Larson and J. Miller, “Time-temperature relationship for rupture creep stress,” Trans ASME 74, No. 5, 765–775 (1952).
22.
go back to reference B. N. Sinayski, M. S. Belyaev, N. D. Zhukov, and A. D. Panteleev, “Temperature-time approach to approximation and extrapolation of characteristics of resistance of high-cycle nickel alloys to high-cycle fatigue”, Problemy Prochnosti, No. 3, 44–50 (1989) [in Russian]. B. N. Sinayski, M. S. Belyaev, N. D. Zhukov, and A. D. Panteleev, “Temperature-time approach to approximation and extrapolation of characteristics of resistance of high-cycle nickel alloys to high-cycle fatigue”, Problemy Prochnosti, No. 3, 44–50 (1989) [in Russian].
23.
go back to reference S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. (McMaster University, Ontario, 2009). S. O. Haykin, Neural Networks and Learning Machines, 3rd ed. (McMaster University, Ontario, 2009).
24.
go back to reference Y. S. Yoo, I. S. Kim, D. H. Kim, C. Y. Jo, H. M. Kim, and C. N. Jone, “The application of neural network to the development of single crystal superalloys,” Superalloys, Ed. by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, and S. Walston (The Minerals, Metals & Materials Society, 2004). Y. S. Yoo, I. S. Kim, D. H. Kim, C. Y. Jo, H. M. Kim, and C. N. Jone, “The application of neural network to the development of single crystal superalloys,” Superalloys, Ed. by K. A. Green, T. M. Pollock, H. Harada, T. E. Howson, R. C. Reed, J. J. Schirra, and S. Walston (The Minerals, Metals & Materials Society, 2004).
26.
go back to reference O. S. Nurgayanova and A. A. Ganeev, “Mathematical modeling of the effect of alloying elements on the heat resistance of nickel alloys with a single crystal structure,” Vestnik UGATU 8 (4), 91–95 (2006). O. S. Nurgayanova and A. A. Ganeev, “Mathematical modeling of the effect of alloying elements on the heat resistance of nickel alloys with a single crystal structure,” Vestnik UGATU 8 (4), 91–95 (2006).
27.
go back to reference O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design of cast nickel superalloys with a single-crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006). O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design of cast nickel superalloys with a single-crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006).
28.
go back to reference O. S. Nurgayanova and A. A. Ganeev, “Neural network approaches to the design of new heat-resistant nickel casting alloys,” Neirokomp’yutery. Razrabotka, Primenenie, No. 10, 70–74 (2007). O. S. Nurgayanova and A. A. Ganeev, “Neural network approaches to the design of new heat-resistant nickel casting alloys,” Neirokomp’yutery. Razrabotka, Primenenie, No. 10, 70–74 (2007).
29.
go back to reference O. S. Nurgayanova and A. A. Ganeev, “Synthesis of cast nickel superalloys for castings with directional and single-crystal structure,” Vestnik UGATU 9 (1), 160–169 (2007). O. S. Nurgayanova and A. A. Ganeev, “Synthesis of cast nickel superalloys for castings with directional and single-crystal structure,” Vestnik UGATU 9 (1), 160–169 (2007).
30.
go back to reference S. Khaikin, Neural Networks: A Comprehensive Foundation (Vil’yams, Moscow, 2017). S. Khaikin, Neural Networks: A Comprehensive Foundation (Vil’yams, Moscow, 2017).
31.
go back to reference N. Bano, A. Fahim, and M. Nganbe, “Modeling of thermal expansion coefficients of Ni based superalloys using artificial neural networks,” J. Mater. Eng. Perform. 22, 952–957 (2013).CrossRef N. Bano, A. Fahim, and M. Nganbe, “Modeling of thermal expansion coefficients of Ni based superalloys using artificial neural networks,” J. Mater. Eng. Perform. 22, 952–957 (2013).CrossRef
32.
go back to reference N. Bano, A. Fahim, and M. Nganbe, “Neural network approach for modeling the hysteresis energy of Ni based superalloys,” Proceedings of the International Conference on Mechanical Engineering and Mechatronics (Ottawa, 2012). N. Bano, A. Fahim, and M. Nganbe, “Neural network approach for modeling the hysteresis energy of Ni based superalloys,” Proceedings of the International Conference on Mechanical Engineering and Mechatronics (Ottawa, 2012).
33.
go back to reference N. Bano, A. Fahim, and M. Nganbe, “Neural network model to predict low cycle fatigue failure energy of rene77,” Proceedings of the AES-ATEMA’2010 Fifth International Conference (Montreal, 2010), pp. 123–126. N. Bano, A. Fahim, and M. Nganbe, “Neural network model to predict low cycle fatigue failure energy of rene77,” Proceedings of the AES-ATEMA’2010 Fifth International Conference (Montreal, 2010), pp. 123–126.
34.
go back to reference N. Bano, A. Fahim, and M. Nganbe, “Fatigue crack initiation life prediction of IN738LC using artificial neural network,” Proceedings of the AES-ATEMA’2010 Fifth International Conferenc (Montreal, 2010), pp. 117–121. N. Bano, A. Fahim, and M. Nganbe, “Fatigue crack initiation life prediction of IN738LC using artificial neural network,” Proceedings of the AES-ATEMA’2010 Fifth International Conferenc (Montreal, 2010), pp. 117–121.
35.
go back to reference N. Bano, A. Fahim, and M. Nganbe, “Determination of thermal expansion coefficient of IN738LC with duplex size gamma prime using neural network,” Proceedings of the Conference of Metallurgists (Winnipeg, 2008). N. Bano, A. Fahim, and M. Nganbe, “Determination of thermal expansion coefficient of IN738LC with duplex size gamma prime using neural network,” Proceedings of the Conference of Metallurgists (Winnipeg, 2008).
37.
go back to reference S. Feng, H. Zhou, and H. Dong, “Using deep neural regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (HumanaPress, 2019). S. Feng, H. Zhou, and H. Dong, “Using deep neural regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (HumanaPress, 2019).
38.
go back to reference B. N. Sinayski, M. S. Belyaev, and N. D. Zhukov, “Panteleev network with small dataset to predict material defects,” Mater. Des. 162, 300–310 (1989). B. N. Sinayski, M. S. Belyaev, and N. D. Zhukov, “Panteleev network with small dataset to predict material defects,” Mater. Des. 162, 300–310 (1989).
39.
go back to reference F. Burden and D. Winkler, “Bayesian regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (Humana Press, 2008). F. Burden and D. Winkler, “Bayesian regularization of neural networks,” Artificial Neural Networks. Methods in Molecular Biology™, Ed. by D. J. Livingstone (Humana Press, 2008).
40.
go back to reference O. S. Nurgayanova, “Application of artificial neural networks in the problems of classification of multicomponent alloys,” Information technology for intelligent decision support. (ITIDS'2018), Proc. VI All-Russian Conference (Ufa, 2018), pp. 21–26. O. S. Nurgayanova, “Application of artificial neural networks in the problems of classification of multicomponent alloys,” Information technology for intelligent decision support. (ITIDS'2018), Proc. VI All-Russian Conference (Ufa, 2018), pp. 21–26.
41.
go back to reference O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design system for casting nickel heat-resistant alloys with a single crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006). O. S. Nurgayanova and A. A. Ganeev, “Computer-aided design system for casting nickel heat-resistant alloys with a single crystal structure,” Polzunovskii Al’manakh, No. 3, 22–26 (2006).
42.
go back to reference E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal heatproof alloys for gas-turbine engines, Vestnik MGTU. Ser. Mashinostroenie, No. SP2, 38–52 (2011). E. N. Kablov, N. V. Petrushin, and E. S. Elyutin, “Single-crystal heatproof alloys for gas-turbine engines, Vestnik MGTU. Ser. Mashinostroenie, No. SP2, 38–52 (2011).
43.
go back to reference X. R. Zhou, Y. S. Li, Z. L. Yan, C. W. Liu, and L. H. Zhu, “Kinetics of overlapping precipitation and particle size distribution of Ni3Al phase,” Phys. Met. Metallogr. 120, No. 4, 345–352 (2019).CrossRef X. R. Zhou, Y. S. Li, Z. L. Yan, C. W. Liu, and L. H. Zhu, “Kinetics of overlapping precipitation and particle size distribution of Ni3Al phase,” Phys. Met. Metallogr. 120, No. 4, 345–352 (2019).CrossRef
44.
go back to reference A. G. Tyagunov, E. E. Baryshev, T. K. Kostina, B. A. Baum, V. P. Lesnikov, and I. P. Semenova, “The effect of long-term high-temperature heat treatment at 950°C on the structure and mechanical properties of the ZhS6U superalloy,” Phys. Met. Metallogr. 86, No. 1, 65–69 (1998). A. G. Tyagunov, E. E. Baryshev, T. K. Kostina, B. A. Baum, V. P. Lesnikov, and I. P. Semenova, “The effect of long-term high-temperature heat treatment at 950°C on the structure and mechanical properties of the ZhS6U superalloy,” Phys. Met. Metallogr. 86, No. 1, 65–69 (1998).
45.
go back to reference V. P. Kuznetsov, V. P. Lesnikov, and N. A. Popov, Structure and Properties of Heat Resistant Nickel Alloys (Ural University, 2016). V. P. Kuznetsov, V. P. Lesnikov, and N. A. Popov, Structure and Properties of Heat Resistant Nickel Alloys (Ural University, 2016).
Metadata
Title
Simulation of the Dynamics of Changing the Heat Resistance of Nickel Alloys by Machine Learning Methods
Authors
A. G. Tyagunov
D. A. Tarasov
O. B. Mil’der
Publication date
01-07-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 7/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21070127

Other articles of this Issue 7/2021

Physics of Metals and Metallography 7/2021 Go to the issue

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Model of Primary Recrystallization in Pure Copper

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Formation of an Ordered Structure in the Cu–50 at % Pd Alloy