Skip to main content
Top

2013 | OriginalPaper | Chapter

Simulation of Thermal and Electrical Transport in Nanotube and Nanowire Composites

Authors : Satish Kumar, Muhammad A. Alam, Jayathi Y. Murthy

Published in: New Frontiers of Nanoparticles and Nanocomposite Materials

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanotube-based thin-film composites promise significant improvement over existing technologies in the performance of large-area macroelectronics, flexible electronics, energy harvesting and storage, and in bio-chemical sensing applications. We present an overview of recent research on the electrical and thermal performance of thin-film composites composed of random 2D dispersions of nanotubes in a host matrix. Results from direct simulations of electrical and thermal transport in these composites using a finite volume method are compared to those using an effective medium approximation. The role of contact physics and percolation in influencing electrical and thermal behavior are explored. The effect of heterogeneous networks of semiconducting and metallic tubes on the transport properties of the thin film composites is investigated. Transport through a network of nanotubes is dominated by the interfacial resistance at the contact of two tubes. We explore the interfacial thermal interaction between two carbon nanotubes in a crossed configuration using molecular dynamics simulation and wavelet methods. We pass a high temperature pulse along one of the nanotubes and investigate the energy transfer to the other tube. Wavelet transformations of heat pulses show that how different phonon modes are excited and how they evolve and propagate along the tube axis depending on its chirality.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hur, S.H., Kocabas, C., Gaur, A., et al.: Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. J. Appl. Phys. 98(11), 114302 (2005)CrossRef Hur, S.H., Kocabas, C., Gaur, A., et al.: Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks. J. Appl. Phys. 98(11), 114302 (2005)CrossRef
2.
go back to reference Reuss, R.H., Chalamala, B.R., Moussessian, A., et al.: Macroelectronics: perspectives on technology and applications. Proc. IEEE 93(7), 1239–1256 (2005)CrossRef Reuss, R.H., Chalamala, B.R., Moussessian, A., et al.: Macroelectronics: perspectives on technology and applications. Proc. IEEE 93(7), 1239–1256 (2005)CrossRef
3.
go back to reference Collins, P.C., Arnold, M.S., Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706–709 (2001)CrossRef Collins, P.C., Arnold, M.S., Avouris, P.: Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292(5517), 706–709 (2001)CrossRef
4.
go back to reference Kagan, C.R., Andry, P.: Thin film transistors. Marcel Dekker, New York (2003)CrossRef Kagan, C.R., Andry, P.: Thin film transistors. Marcel Dekker, New York (2003)CrossRef
5.
go back to reference Novak, J.P., Snow, E.S., Houser, E.J., et al.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)CrossRef Novak, J.P., Snow, E.S., Houser, E.J., et al.: Nerve agent detection using networks of single-walled carbon nanotubes. Appl. Phys. Lett. 83(19), 4026–4028 (2003)CrossRef
7.
go back to reference Madelung, O.: Technology and applications of amorphous silicon. Springer, Berlin (2000) Madelung, O.: Technology and applications of amorphous silicon. Springer, Berlin (2000)
8.
go back to reference Zhou, Y.X., Gaur, A., Hur, S.H., et al.: P-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 4(10), 2031–2035 (2004)CrossRef Zhou, Y.X., Gaur, A., Hur, S.H., et al.: P-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 4(10), 2031–2035 (2004)CrossRef
9.
go back to reference Snow, E.S., Campbell, P.M., Ancona, M.G., et al.: High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86(3), 066802 (2005)CrossRef Snow, E.S., Campbell, P.M., Ancona, M.G., et al.: High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl. Phys. Lett. 86(3), 066802 (2005)CrossRef
10.
go back to reference Snow, E.S., Novak, J.P., Lay, M.D., et al.: Carbon nanotube networks: nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 22(4), 1990–1994 (2004)CrossRef Snow, E.S., Novak, J.P., Lay, M.D., et al.: Carbon nanotube networks: nanomaterial for macroelectronic applications. J. Vac. Sci. Technol. B 22(4), 1990–1994 (2004)CrossRef
11.
go back to reference Snow, E.S., Novak, J.P., Campbell, P.M., et al.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145–2147 (2003)CrossRef Snow, E.S., Novak, J.P., Campbell, P.M., et al.: Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145–2147 (2003)CrossRef
12.
go back to reference Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Material 21(1), 29–53 (2009)CrossRef Cao, Q., Rogers, J.A.: Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Material 21(1), 29–53 (2009)CrossRef
13.
go back to reference Kumar, S., Murthy, J.Y., Alam, M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), 066802 (2005)CrossRef Kumar, S., Murthy, J.Y., Alam, M.A.: Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), 066802 (2005)CrossRef
14.
go back to reference Hur, S.H., Khang, D.Y., Kocabas, C., et al.: Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Applied Physics Letters 85(23), 5730–5732 (2004)CrossRef Hur, S.H., Khang, D.Y., Kocabas, C., et al.: Nanotransfer printing by use of noncovalent surface forces: applications to thin-film transistors that use single-walled carbon nanotube networks and semiconducting polymers. Applied Physics Letters 85(23), 5730–5732 (2004)CrossRef
15.
go back to reference Kocabas, C., Hur, S.H., Gaur, A., et al.: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11), 1110–1116 (2005)CrossRef Kocabas, C., Hur, S.H., Gaur, A., et al.: Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 1(11), 1110–1116 (2005)CrossRef
16.
go back to reference Kocabas, C., Shim, M., Rogers, J.A.: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128(14), 4540–4541 (2006)CrossRef Kocabas, C., Shim, M., Rogers, J.A.: Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 128(14), 4540–4541 (2006)CrossRef
17.
go back to reference Milton, G.W.: The theory of composites. Cambridge University Press, New York (2002)CrossRef Milton, G.W.: The theory of composites. Cambridge University Press, New York (2002)CrossRef
18.
go back to reference Nan, C.W., Birringer, R., Clarke, D.R., et al.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997)CrossRef Nan, C.W., Birringer, R., Clarke, D.R., et al.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81(10), 6692–6699 (1997)CrossRef
19.
go back to reference Jeong, C., Nair, P., Khan, M., Lundstrom M., Alam, M.A.: Prospects for Nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 11 (11), 5020–5025 (2011) Jeong, C., Nair, P., Khan, M., Lundstrom M., Alam, M.A.: Prospects for Nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 11 (11), 5020–5025 (2011)
20.
go back to reference Cao, Q., Kim, H. K., Pimparkar, N., et al.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500, (2008) Cao, Q., Kim, H. K., Pimparkar, N., et al.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454, 495–500, (2008)
21.
go back to reference Kumar, S., Alam, M.A., Murthy, J.Y.: Computational model for transport in nanotube-based composites with applications to flexible electronics. ASME J. Heat Transf. 129(4), 500–508 (2007)CrossRef Kumar, S., Alam, M.A., Murthy, J.Y.: Computational model for transport in nanotube-based composites with applications to flexible electronics. ASME J. Heat Transf. 129(4), 500–508 (2007)CrossRef
22.
go back to reference Kumar, S., Pimparkar, N., Murthy, J.Y., et al.: Theory of transfer characteristics of nanotube network transistors. Appl. Phys. Lett. 88, 123505 (2006)CrossRef Kumar, S., Pimparkar, N., Murthy, J.Y., et al.: Theory of transfer characteristics of nanotube network transistors. Appl. Phys. Lett. 88, 123505 (2006)CrossRef
23.
go back to reference Zhang, G., Qi, P., Wang, X., et al.: Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006)CrossRef Zhang, G., Qi, P., Wang, X., et al.: Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314, 974–977 (2006)CrossRef
24.
go back to reference Arnold, M.S., Green, A.A., Hulvat, J.F., et al.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)CrossRef Arnold, M.S., Green, A.A., Hulvat, J.F., et al.: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60–65 (2006)CrossRef
25.
go back to reference Huang, H., Liu, C., Wu, Y., et al.: Aligned carbon nanotube composite films for thermal management. Adv. Material 17, 1652–1656 (2005)CrossRef Huang, H., Liu, C., Wu, Y., et al.: Aligned carbon nanotube composite films for thermal management. Adv. Material 17, 1652–1656 (2005)CrossRef
26.
go back to reference Nan, C.W., Liu, G., Lin, Y.H., et al.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85(16), 3549–3551 (2004)CrossRef Nan, C.W., Liu, G., Lin, Y.H., et al.: Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85(16), 3549–3551 (2004)CrossRef
27.
go back to reference Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRef Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., et al.: Carbon nanotube composites for thermal management. Appl. Phys. Lett. 80(15), 2767–2769 (2002)CrossRef
28.
go back to reference Xu, X.J., Thwe, M.M., Shearwood, C., et al.: Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)CrossRef Xu, X.J., Thwe, M.M., Shearwood, C., et al.: Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)CrossRef
29.
go back to reference Reibold, M., Paufler, P., Levin, A.A., et al.: Carbon nanotubes in an ancient Damascus sabre. Nature 444(16), 286 (2006)CrossRef Reibold, M., Paufler, P., Levin, A.A., et al.: Carbon nanotubes in an ancient Damascus sabre. Nature 444(16), 286 (2006)CrossRef
30.
go back to reference Hu, L., Hecht, D.S., Gruner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513–2517 (2004)CrossRef Hu, L., Hecht, D.S., Gruner, G.: Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513–2517 (2004)CrossRef
31.
go back to reference Keblinski, P., Cleri, F.: Contact resistance in percolating networks. Phy. Rev. B 69(18), 184201 (2004)CrossRef Keblinski, P., Cleri, F.: Contact resistance in percolating networks. Phy. Rev. B 69(18), 184201 (2004)CrossRef
32.
go back to reference Hu, T., Grosberg, A.Y., Shklovskii, B.I.: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73(15), 155434 (2006)CrossRef Hu, T., Grosberg, A.Y., Shklovskii, B.I.: Conductivity of a suspension of nanowires in a weakly conducting medium. Phys. Rev. B 73(15), 155434 (2006)CrossRef
33.
go back to reference Lukes, J.R., Zhong, H.L.: Thermal conductivity of individual single-wall carbon nanotubes. J. Heat Transf.-Trans. ASME 129(6), 705–716 (2007)CrossRef Lukes, J.R., Zhong, H.L.: Thermal conductivity of individual single-wall carbon nanotubes. J. Heat Transf.-Trans. ASME 129(6), 705–716 (2007)CrossRef
34.
go back to reference Maruyama, S., Igarashi, Y., Shibuta, Y.: Molecular dynamics simulations of heat transfer issues in carbon nanotubes. In: The 1st international symposium on micro & nano technology. Honolulu, Hawaii, USA 2004 Maruyama, S., Igarashi, Y., Shibuta, Y.: Molecular dynamics simulations of heat transfer issues in carbon nanotubes. In: The 1st international symposium on micro & nano technology. Honolulu, Hawaii, USA 2004
35.
go back to reference Small, J.P., Shi, L., Kim, P.: Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun. 127(2), 181–186 (2003)CrossRef Small, J.P., Shi, L., Kim, P.: Mesoscopic thermal and thermoelectric measurements of individual carbon nanotubes. Solid State Commun. 127(2), 181–186 (2003)CrossRef
36.
go back to reference Maune, H., Chiu, H.Y., Bockrath, M.: Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phy. Lett. 89(1), 013109 (2006)CrossRef Maune, H., Chiu, H.Y., Bockrath, M.: Thermal resistance of the nanoscale constrictions between carbon nanotubes and solid substrates. Appl. Phy. Lett. 89(1), 013109 (2006)CrossRef
37.
go back to reference Carlborg. C.F., Shiomi. J., Maruyama. S.: Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys. Rev. B 78 (20), 205406 (2008) Carlborg. C.F., Shiomi. J., Maruyama. S.: Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys. Rev. B 78 (20), 205406 (2008)
38.
go back to reference Zhong, H.L., Lukes, J.R.: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74(12), 125403 (2006)CrossRef Zhong, H.L., Lukes, J.R.: Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B 74(12), 125403 (2006)CrossRef
39.
go back to reference Greaney, P.A., Grossman, J.C.: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Phys. Rev. Lett. 98(12), 125503 (2007)CrossRef Greaney, P.A., Grossman, J.C.: Nanomechanical energy transfer and resonance effects in single-walled carbon nanotubes. Phys. Rev. Lett. 98(12), 125503 (2007)CrossRef
40.
go back to reference Prasher, R.S., Hu, X.J., Chalopin, Y., et al.: Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009)CrossRef Prasher, R.S., Hu, X.J., Chalopin, Y., et al.: Turning carbon nanotubes from exceptional heat conductors into insulators. Phys. Rev. Lett. 102, 105901 (2009)CrossRef
41.
go back to reference Pimparkar, N., Kumar, S., Murthy, J.Y., et al.: Current–voltage characteristics of long-channel nanobundle thin-film transistors: A ‘bottom-up’ perspective. IEEE Electron Device Lett. 28(2), 157–160 (2006)CrossRef Pimparkar, N., Kumar, S., Murthy, J.Y., et al.: Current–voltage characteristics of long-channel nanobundle thin-film transistors: A ‘bottom-up’ perspective. IEEE Electron Device Lett. 28(2), 157–160 (2006)CrossRef
42.
go back to reference Bo, X.Z., Lee, C.Y., Strano, M.S., et al.: Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor. Appl. Phy. Lett. 86(18), 182102 (2005)CrossRef Bo, X.Z., Lee, C.Y., Strano, M.S., et al.: Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor. Appl. Phy. Lett. 86(18), 182102 (2005)CrossRef
43.
go back to reference Kumar, S., Blanchet, G.B., Hybertsen, M.S., et al.: Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 89(14), 143501 (2006)CrossRef Kumar, S., Blanchet, G.B., Hybertsen, M.S., et al.: Performance of carbon nanotube-dispersed thin-film transistors. Appl. Phys. Lett. 89(14), 143501 (2006)CrossRef
44.
go back to reference Kundert, K,S.: Sparse user’s guide, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA (1988) Kundert, K,S.: Sparse user’s guide, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA (1988)
45.
go back to reference Pike, G.E., Seager, C.H.: Percolation and conductivity—computer study 0.1. Phys. Rev. B 10(4), 1421–1434 (1974) Pike, G.E., Seager, C.H.: Percolation and conductivity—computer study 0.1. Phys. Rev. B 10(4), 1421–1434 (1974)
47.
go back to reference Foygel, M., Morris, R.D., Anez, D., et al.: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005)CrossRef Foygel, M., Morris, R.D., Anez, D., et al.: Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys. Rev. B 71(10), 104201 (2005)CrossRef
48.
go back to reference Shenogina, N., Shenogin, S., Xue, L., et al.: On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 87(13), 133106 (2005)CrossRef Shenogina, N., Shenogin, S., Xue, L., et al.: On the lack of thermal percolation in carbon nanotube composites. Appl. Phys. Lett. 87(13), 133106 (2005)CrossRef
49.
go back to reference Frank, D.J., Lobb, C.J.: Highly efficient algorithm for percolative transport studies in 2 dimensions. Phys. Rev. B 37(1), 302–307 (1988)CrossRef Frank, D.J., Lobb, C.J.: Highly efficient algorithm for percolative transport studies in 2 dimensions. Phys. Rev. B 37(1), 302–307 (1988)CrossRef
50.
go back to reference Lobb, C.J., Frank, D.J.: Percolative conduction and the Alexander-Orbach conjecture in 2 dimensions. Phys. Rev, B 30(7), 4090–4092 (1984)CrossRef Lobb, C.J., Frank, D.J.: Percolative conduction and the Alexander-Orbach conjecture in 2 dimensions. Phys. Rev, B 30(7), 4090–4092 (1984)CrossRef
51.
go back to reference Pimparkar, N., Alam, M.A.: A “bottom-up” redefinition for mobility and the effect of poor tube–tube contact on the performance of CNT nanonet thin-film transistors. IEEE Electron Device Lett. 29(9), 1037–1039 (2008)CrossRef Pimparkar, N., Alam, M.A.: A “bottom-up” redefinition for mobility and the effect of poor tube–tube contact on the performance of CNT nanonet thin-film transistors. IEEE Electron Device Lett. 29(9), 1037–1039 (2008)CrossRef
52.
go back to reference Taur, Y., Ning, T.: Fundamentals of modern VLSI devices. Cambridge University Press, New York (1998) Taur, Y., Ning, T.: Fundamentals of modern VLSI devices. Cambridge University Press, New York (1998)
53.
go back to reference Fuhrer, M.S., Nygard, J., Shih, L., et al.: Crossed nanotube junctions. Science 288(5465), 494–497 (2000)CrossRef Fuhrer, M.S., Nygard, J., Shih, L., et al.: Crossed nanotube junctions. Science 288(5465), 494–497 (2000)CrossRef
54.
go back to reference Seidel, R.V., Graham, A.P., Rajasekharan, B., et al.: Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 96(11), 6694–6699 (2004)CrossRef Seidel, R.V., Graham, A.P., Rajasekharan, B., et al.: Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes. J. Appl. Phys. 96(11), 6694–6699 (2004)CrossRef
55.
go back to reference Huxtable, S.T., Cahill, D.G., Shenogin, S., et al.: Interfacial heat flow in carbon nanotube suspensions. Nat. Material 2(11), 731–734 (2003)CrossRef Huxtable, S.T., Cahill, D.G., Shenogin, S., et al.: Interfacial heat flow in carbon nanotube suspensions. Nat. Material 2(11), 731–734 (2003)CrossRef
56.
go back to reference Kumar, S., Alam, M.A., Murthy, J.Y.: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90(10), 104105 (2007)CrossRef Kumar, S., Alam, M.A., Murthy, J.Y.: Effect of percolation on thermal transport in nanotube composites. Appl. Phys. Lett. 90(10), 104105 (2007)CrossRef
57.
go back to reference Bryning, M.B., Milkie, D.E., Islam, M.F., et al.: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87(16), 161909 (2005)CrossRef Bryning, M.B., Milkie, D.E., Islam, M.F., et al.: Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites. Appl. Phys. Lett. 87(16), 161909 (2005)CrossRef
58.
go back to reference Hung, M.T., Choi, O., Ju, Y.S., et al.: Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl. Phys. Lett. 89(2), 023117 (2006)CrossRef Hung, M.T., Choi, O., Ju, Y.S., et al.: Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl. Phys. Lett. 89(2), 023117 (2006)CrossRef
59.
go back to reference Kumar, S., Murthy, J.Y.: Interfacial thermal transport between nanotubes. J. Appl. Phys. 106(8), 084302 (2009)CrossRef Kumar, S., Murthy, J.Y.: Interfacial thermal transport between nanotubes. J. Appl. Phys. 106(8), 084302 (2009)CrossRef
60.
go back to reference Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al.: A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys.-Condens. Matt. 14(4), 783–802 (2002)CrossRef Brenner, D.W., Shenderova, O.A., Harrison, J.A., et al.: A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys.-Condens. Matt. 14(4), 783–802 (2002)CrossRef
61.
go back to reference Osman, M.A., Srivastava, D.: Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes. Phys. Rev. B 72(12), 125413 (2005)CrossRef Osman, M.A., Srivastava, D.: Molecular dynamics simulation of heat pulse propagation in single-wall carbon nanotubes. Phys. Rev. B 72(12), 125413 (2005)CrossRef
62.
go back to reference Erhart, P., Albe, K.: The role of thermostats in modeling vapor phase condensation of silicon nanoparticles. Appl. Surf. Sci. 226(1–3), 12–18 (2004)CrossRef Erhart, P., Albe, K.: The role of thermostats in modeling vapor phase condensation of silicon nanoparticles. Appl. Surf. Sci. 226(1–3), 12–18 (2004)CrossRef
63.
go back to reference Maruyama, S.J.: Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)CrossRef Maruyama, S.J.: Non-Fourier heat conduction in a single-walled carbon nanotube: classical molecular dynamics simulations. Phys. Rev. B 73(20), 205420 (2006)CrossRef
64.
go back to reference Lau, K.M., Weng, H.: Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc. 76(12), 2391–2402 (1995)CrossRef Lau, K.M., Weng, H.: Climate signal detection using wavelet transform: How to make a time series sing. Bull. Am. Meteorol. Soc. 76(12), 2391–2402 (1995)CrossRef
65.
go back to reference Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRef Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRef
66.
go back to reference Liu, C.H., Huang, H., Wu, Y., et al.: Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 84(21), 4248–4250 (2004)CrossRef Liu, C.H., Huang, H., Wu, Y., et al.: Thermal conductivity improvement of silicone elastomer with carbon nanotube loading. Appl. Phys. Lett. 84(21), 4248–4250 (2004)CrossRef
67.
go back to reference Gong, Q.M., Li, Z., Bai, X.D., et al.: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 384(1–2), 209–214 (2004)CrossRef Gong, Q.M., Li, Z., Bai, X.D., et al.: Thermal properties of aligned carbon nanotube/carbon nanocomposites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 384(1–2), 209–214 (2004)CrossRef
68.
go back to reference Choi, S.U.S., Zhang, Z.G., Yu, W., et al.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(14), 2252–2254 (2001)CrossRef Choi, S.U.S., Zhang, Z.G., Yu, W., et al.: Anomalous thermal conductivity enhancement in nanotube suspensions. Appl. Phys. Lett. 79(14), 2252–2254 (2001)CrossRef
69.
go back to reference Wen, D.S., Ding, Y.L.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J. Thermophy. Heat Transf. 18(4), 481–485 (2004)CrossRef Wen, D.S., Ding, Y.L.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotubes nanofluids). J. Thermophy. Heat Transf. 18(4), 481–485 (2004)CrossRef
Metadata
Title
Simulation of Thermal and Electrical Transport in Nanotube and Nanowire Composites
Authors
Satish Kumar
Muhammad A. Alam
Jayathi Y. Murthy
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8611_2011_61

Premium Partners