Skip to main content
Top

2019 | OriginalPaper | Chapter

7. Single- and Multi-objective Optimization of Traditional and Modern Machining Processes Using Jaya Algorithm and Its Variants

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the formulation of process parameters optimization models for traditional machining processes of turning, surface grinding and modern machining processes of wire electric discharge machining (wire EDM), electro-discharge machining (EDM), micro-electric discharge machining, electro-chemical machining (ECM), abrasive waterjet machining (AWJM), focused ion beam (FIB) micro-milling, laser cutting and plasma arc machining. The TLBO and NSTLBO algorithms, Jaya algorithm and its variants such as Quasi-oppositional (QO) Jaya, multi-objective (MO) Jaya, and multi-objective quasi-oppositional (MOQO) Jaya are applied to solve the single and multi-objective optimization problems of the selected traditional and modern machining processes. The results are found better as compared to those given by the other advanced optimization algorithms.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Acharya, B. G., Jain, V. K., & Batra, J. L. (1986). Multiobjective optimization of ECM process. Precision Engineering, 8, 88–96.CrossRef Acharya, B. G., Jain, V. K., & Batra, J. L. (1986). Multiobjective optimization of ECM process. Precision Engineering, 8, 88–96.CrossRef
go back to reference Baskar, N., Saravanan, R., Asokan, P., & Prabhaharan, G. (2004). Ants colony algorithm approach for multi-objective optimization of surface grinding operations. International Journal of Advanced Manufacturing Technology, 23, 311–317.CrossRef Baskar, N., Saravanan, R., Asokan, P., & Prabhaharan, G. (2004). Ants colony algorithm approach for multi-objective optimization of surface grinding operations. International Journal of Advanced Manufacturing Technology, 23, 311–317.CrossRef
go back to reference Bhattacharyya, B., & Sorkhel, S. K. (1999). Investigation for controlled electrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology, 86, 200–207.CrossRef Bhattacharyya, B., & Sorkhel, S. K. (1999). Investigation for controlled electrochemical machining through response surface methodology-based approach. Journal of Materials Processing Technology, 86, 200–207.CrossRef
go back to reference Bhavsar, S. N., Aravindan, S., & Rao, P. V. (2015). Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide. Precision Engineering, 40, 131–138.CrossRef Bhavsar, S. N., Aravindan, S., & Rao, P. V. (2015). Investigating material removal rate and surface roughness using multi-objective optimization for focused ion beam (FIB) micro-milling of cemented carbide. Precision Engineering, 40, 131–138.CrossRef
go back to reference Choobineh, F., Jain, V. K., (1990) Selection of ECM parameters: A fuzzy sets approach. In: Proceedings of the 1990 International Conference on Systems, Man and Cybernetics, IEEE, Los Angeles, CA, USA, pp. 430–435. Choobineh, F., Jain, V. K., (1990) Selection of ECM parameters: A fuzzy sets approach. In: Proceedings of the 1990 International Conference on Systems, Man and Cybernetics, IEEE, Los Angeles, CA, USA, pp. 430–435.
go back to reference Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(12), 1986–2001.CrossRef Garg, M. P., Jain, A., & Bhushan, G. (2012). Modelling and multi-objective optimization of process parameters of wire electrical discharge machining using non-dominated sorting genetic algorithm-II. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(12), 1986–2001.CrossRef
go back to reference Jain, N. K., & Jain, V. K. (2007). Optimization of electrochemical machining process parameters using genetic algorithm. Machining Science and Technology, 11, 235–258.CrossRef Jain, N. K., & Jain, V. K. (2007). Optimization of electrochemical machining process parameters using genetic algorithm. Machining Science and Technology, 11, 235–258.CrossRef
go back to reference Kovacevic, M., Madic, M., Radovanovic, M., & Rancic, D. (2014). Software prototype for solving multi-objective machining optimization problems: Application in non-conventional machining processes. Expert Systems with Applications, 41, 5657–5668.CrossRef Kovacevic, M., Madic, M., Radovanovic, M., & Rancic, D. (2014). Software prototype for solving multi-objective machining optimization problems: Application in non-conventional machining processes. Expert Systems with Applications, 41, 5657–5668.CrossRef
go back to reference Kuriachen, B., Somashekhar, K. P., & Mathew, J. (2015). Multiresponse optimization of micro-wire electrical discharge machining process. The International Journal of Advanced Manufacturing Technology, 76(1–4), 91–104.CrossRef Kuriachen, B., Somashekhar, K. P., & Mathew, J. (2015). Multiresponse optimization of micro-wire electrical discharge machining process. The International Journal of Advanced Manufacturing Technology, 76(1–4), 91–104.CrossRef
go back to reference Kuriakose, S., & Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology, 170, 133–141.CrossRef Kuriakose, S., & Shunmugam, M. S. (2005). Multi-objective optimization of wire-electro discharge machining process by non-dominated sorting genetic algorithm. Journal of Materials Processing Technology, 170, 133–141.CrossRef
go back to reference Mukherjee, R., & Chakraborty, S. (2013). Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 64, 781–791.CrossRef Mukherjee, R., & Chakraborty, S. (2013). Selection of the optimal electrochemical machining process parameters using biogeography-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 64, 781–791.CrossRef
go back to reference Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.CrossRef Palanikumar, K., Latha, B., Senthilkumar, V. S., & Karthikeyan, R. (2009). Multiple performance optimization in machining of GFRP composites by a PCD tool using non-dominated sorting genetic algorithm (NSGA-II). Metals and Materials International, 15(2), 249–258.CrossRef
go back to reference Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44, 1858–1865.CrossRef Pandey, A. K., & Dubey, A. K. (2012). Simultaneous optimization of multiple quality characteristics in laser cutting of titanium alloy sheet. Optics & Laser Technology, 44, 1858–1865.CrossRef
go back to reference Pawar, P. J., & Rao, R. V. (2013). Parameter optimization of machining processes using teaching—learning-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 67, 995–1006.CrossRef Pawar, P. J., & Rao, R. V. (2013). Parameter optimization of machining processes using teaching—learning-based optimization algorithm. International Journal of Advanced Manufacturing Technology, 67, 995–1006.CrossRef
go back to reference Pawar, P. J., Rao, R. V., & Davim, J. P. (2010). Multiobjective optimization of grinding process parameters using particle swarm optimization algorithm. Materials and Manufacturing Processes, 25, 424–431.CrossRef Pawar, P. J., Rao, R. V., & Davim, J. P. (2010). Multiobjective optimization of grinding process parameters using particle swarm optimization algorithm. Materials and Manufacturing Processes, 25, 424–431.CrossRef
go back to reference Rao, R. V. (2010). Advanced modelling and optimization of manufacturing processes: international research and development. London: Springer Verlag. Rao, R. V. (2010). Advanced modelling and optimization of manufacturing processes: international research and development. London: Springer Verlag.
go back to reference Rao, R. V., Pawar, P. J., & Shankar, R. (2008). Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Journal of Engineering Manufacture, 222, 949–958.CrossRef Rao, R. V., Pawar, P. J., & Shankar, R. (2008). Multi-objective optimization of electrochemical machining process parameters using a particle swarm optimization algorithm. Journal of Engineering Manufacture, 222, 949–958.CrossRef
go back to reference Rao, R. V., Rai, D. P., & Balic, J. (2017a). A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence, 61, 103–125.CrossRef Rao, R. V., Rai, D. P., & Balic, J. (2017a). A multi-objective algorithm for optimization of modern machining processes. Engineering Applications of Artificial Intelligence, 61, 103–125.CrossRef
go back to reference Rao, R. V., Rai, D. P., Ramkumar, J., & Balic, J. (2016a). A new multiobjective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering and Management, 11(4), 271–286.CrossRef Rao, R. V., Rai, D. P., Ramkumar, J., & Balic, J. (2016a). A new multiobjective Jaya algorithm for optimization of modern machining processes. Advances in Production Engineering and Management, 11(4), 271–286.CrossRef
go back to reference Rao, R. V., Rai, D. P., Balic, J., Cus, F. (2017b) Optimization of abrasive waterjet machining process using multiobjective Jaya algorithm. Materials Today: Proceedings. Rao, R. V., Rai, D. P., Balic, J., Cus, F. (2017b) Optimization of abrasive waterjet machining process using multiobjective Jaya algorithm. Materials Today: Proceedings.
go back to reference Saravanan, R., Asokan, P., & Sachidanandam, M. (2002). A multiobjective genetic algorithm approach for optimization of surface grinding operations. International Journal of Machine Tools and Manufacture, 42, 1327–1334.CrossRef Saravanan, R., Asokan, P., & Sachidanandam, M. (2002). A multiobjective genetic algorithm approach for optimization of surface grinding operations. International Journal of Machine Tools and Manufacture, 42, 1327–1334.CrossRef
go back to reference Shukla, R., & Singh, D. (2016). Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolutionary Computation, 32, 167–183.CrossRef Shukla, R., & Singh, D. (2016). Experimentation investigation of abrasive water jet machining parameters using Taguchi and evolutionary optimization techniques. Swarm and Evolutionary Computation, 32, 167–183.CrossRef
go back to reference Wen, X. M., Tay, A. A. O., & Nee, A. Y. C. (1992). Microcomputer based optimization of the surface grinding process. Journal of Materials Processing Technology, 29, 75–90.CrossRef Wen, X. M., Tay, A. A. O., & Nee, A. Y. C. (1992). Microcomputer based optimization of the surface grinding process. Journal of Materials Processing Technology, 29, 75–90.CrossRef
go back to reference Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2014). Multi-objective optimization using teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26, 1291–1300.CrossRef Zou, F., Wang, L., Hei, X., Chen, D., & Wang, B. (2014). Multi-objective optimization using teaching–learning-based optimization algorithm. Engineering Applications of Artificial Intelligence, 26, 1291–1300.CrossRef
Metadata
Title
Single- and Multi-objective Optimization of Traditional and Modern Machining Processes Using Jaya Algorithm and Its Variants
Author
Ravipudi Venkata Rao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-78922-4_7

Premium Partner