Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

11-01-2020 | Original Article | Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020

Single image rain streaks removal: a review and an exploration

Journal:
International Journal of Machine Learning and Cybernetics > Issue 4/2020
Authors:
Hong Wang, Qi Xie, Yichen Wu, Qian Zhao, Deyu Meng
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Recently, rain streaks removal from a single image has attracted much research attention to alleviate the degenerated performance of computer vision tasks implemented on rainy images. In this paper, we provide a thorough review for current single-image-based rain removal techniques, which can be mainly categorized into three classes: early filter-based, conventional prior-based, and recent deep learning-based approaches. Furthermore, inspired by the rationality of current deep learning-based methods and insightful characteristics underlying rain shapes, we build a specific coarse-to-fine deraining network architecture, which can finely deliver the rain structures and progressively removes rain streaks from the input image, accordingly. The superiority of the proposed network is substantiated by experiments implemented on synthetic and real rainy images both visually and quantitatively, as compared with comprehensive state-of-the-art methods along this line. Especially, it is verified that the proposed network possesses better generalization capability on real rainy images, implying its potential usefulness for this task.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 4/2020

International Journal of Machine Learning and Cybernetics 4/2020 Go to the issue