Skip to main content
Top

2019 | OriginalPaper | Chapter

Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dauter Z, Lamzin VS, Wilson KS (1995) Proteins at atomic resolution. Curr Opin Struct Biol 5:784–790PubMedCrossRef Dauter Z, Lamzin VS, Wilson KS (1995) Proteins at atomic resolution. Curr Opin Struct Biol 5:784–790PubMedCrossRef
2.
go back to reference Kozma D, Simon I, Tusnady GE (2013) PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529PubMedCrossRef Kozma D, Simon I, Tusnady GE (2013) PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529PubMedCrossRef
3.
go back to reference Natesh R (2014) Crystallography beyond crystals: PX and SP cryoEM. Resonance 19:1177–1196CrossRef Natesh R (2014) Crystallography beyond crystals: PX and SP cryoEM. Resonance 19:1177–1196CrossRef
4.
go back to reference Mountain V (2003) Astex, structural genomix, and syrrx. i can see clearly now: structural biology and drug discovery. Chem Biol 10:95–98PubMedCrossRef Mountain V (2003) Astex, structural genomix, and syrrx. i can see clearly now: structural biology and drug discovery. Chem Biol 10:95–98PubMedCrossRef
5.
go back to reference Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151CrossRefPubMedPubMedCentral Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147–1151CrossRefPubMedPubMedCentral
6.
go back to reference Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707PubMedPubMedCentralCrossRef Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JLS, Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707PubMedPubMedCentralCrossRef
7.
go back to reference Shalev-Benami M, Zhang Y, Rozenberg H, Nobe Y, Taoka M, Matzov D, Zimmerman E, Bashan A, Isobe T, Jaffe CL, Yonath A, Skiniotis G (2017) Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun 8:1589PubMedPubMedCentralCrossRef Shalev-Benami M, Zhang Y, Rozenberg H, Nobe Y, Taoka M, Matzov D, Zimmerman E, Bashan A, Isobe T, Jaffe CL, Yonath A, Skiniotis G (2017) Atomic resolution snapshot of Leishmania ribosome inhibition by the aminoglycoside paromomycin. Nat Commun 8:1589PubMedPubMedCentralCrossRef
8.
go back to reference Dong Y, Liu Y, Jiang W, Smith TJ, Xu Z, Rossmann MG (2017) Antibody-induced uncoating of human rhinovirus B14. In: Proceedings of the national academy of sciences of the United States of America, vol 114, pp 8017–8022CrossRef Dong Y, Liu Y, Jiang W, Smith TJ, Xu Z, Rossmann MG (2017) Antibody-induced uncoating of human rhinovirus B14. In: Proceedings of the national academy of sciences of the United States of America, vol 114, pp 8017–8022CrossRef
9.
go back to reference Danev R, Tegunov D, Baumeister W (2017) Using the Volta phase plate with defocus for cryo-EM single particle analysis. Elife 6:1–9 Danev R, Tegunov D, Baumeister W (2017) Using the Volta phase plate with defocus for cryo-EM single particle analysis. Elife 6:1–9
10.
go back to reference Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL, Yan Y, Green N, Mroczkowski B, Neitz RJ, Wipf P, Falconieri V, Deshaies RJ, Milne JL, Huryn D, Arkin M, Subramaniam S (2016) A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–875PubMedCrossRefPubMedCentral Banerjee S, Bartesaghi A, Merk A, Rao P, Bulfer SL, Yan Y, Green N, Mroczkowski B, Neitz RJ, Wipf P, Falconieri V, Deshaies RJ, Milne JL, Huryn D, Arkin M, Subramaniam S (2016) A resolution cryo-EM structure of human p97 and mechanism of allosteric inhibition. Science 351:871–875PubMedCrossRefPubMedCentral
11.
go back to reference Dubochet J, Mcdowall AW (1981) Vitrification of pure water for electron-microscopy. J Microsc Oxford 124:Rp3–Rp4CrossRef Dubochet J, Mcdowall AW (1981) Vitrification of pure water for electron-microscopy. J Microsc Oxford 124:Rp3–Rp4CrossRef
12.
go back to reference Vogel RH, Provencher SW, von Bonsdorff CH, Adrian M, Dubochet J (1986) Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320:533–535PubMedCrossRef Vogel RH, Provencher SW, von Bonsdorff CH, Adrian M, Dubochet J (1986) Envelope structure of Semliki Forest virus reconstructed from cryo-electron micrographs. Nature 320:533–535PubMedCrossRef
13.
go back to reference Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32PubMedCrossRef Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32PubMedCrossRef
14.
go back to reference Frank J (1975) Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy 1:159–162PubMedCrossRef Frank J (1975) Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy 1:159–162PubMedCrossRef
15.
go back to reference Frank J, Al-Ali L (1975) Signal-to-noise ratio of electron micrographs obtained by cross correlation. Nature 256:376–379PubMedCrossRef Frank J, Al-Ali L (1975) Signal-to-noise ratio of electron micrographs obtained by cross correlation. Nature 256:376–379PubMedCrossRef
16.
go back to reference Saxton WO, Frank J (1977) Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2:219–227PubMedCrossRef Saxton WO, Frank J (1977) Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2:219–227PubMedCrossRef
17.
go back to reference Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929PubMedCrossRef Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929PubMedCrossRef
18.
go back to reference Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat Commun 8:16099PubMedPubMedCentralCrossRef Khoshouei M, Radjainia M, Baumeister W, Danev R (2017) Cryo-EM structure of haemoglobin at 3.2 A determined with the Volta phase plate. Nat Commun 8:16099PubMedPubMedCentralCrossRef
19.
go back to reference Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193PubMedCrossRef Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28:171–193PubMedCrossRef
21.
go back to reference Zhang X, Sun S, Xiang Y, Wong J, Klose T, Raoult D, Rossmann MG (2012) Structure of Sputnik, a virophage, at 3.5 Å resolution. Proc Nat Acad Sci USA 109:18431–18436CrossRef Zhang X, Sun S, Xiang Y, Wong J, Klose T, Raoult D, Rossmann MG (2012) Structure of Sputnik, a virophage, at 3.5 Å resolution. Proc Nat Acad Sci USA 109:18431–18436CrossRef
22.
go back to reference Chen DH, Baker ML, Hryc CF, DiMaio F, Jakana J, Wu W, Dougherty M, Haase-Pettingell C, Schmid MF, Jiang W, Baker D, King JA, Chiu W (2011) Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc Nat Acad Sci USA 108:1355–1360CrossRef Chen DH, Baker ML, Hryc CF, DiMaio F, Jakana J, Wu W, Dougherty M, Haase-Pettingell C, Schmid MF, Jiang W, Baker D, King JA, Chiu W (2011) Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc Nat Acad Sci USA 108:1355–1360CrossRef
23.
go back to reference Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228PubMedCrossRef Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228PubMedCrossRef
26.
go back to reference Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590PubMedPubMedCentralCrossRef Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584–590PubMedPubMedCentralCrossRef
27.
go back to reference McMullan G, Clark AT, Turchetta R, Faruqi AR (2009) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–1416PubMedPubMedCentralCrossRef McMullan G, Clark AT, Turchetta R, Faruqi AR (2009) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109:1411–1416PubMedPubMedCentralCrossRef
28.
go back to reference Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332PubMedPubMedCentralCrossRef Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332PubMedPubMedCentralCrossRef
29.
go back to reference Abrishami V, Vargas J, Li X, Cheng Y, Marabini R, Sorzano CO, Carazo JM (2015) Alignment of direct detection device micrographs using a robust optical flow approach. J Struct Biol 189:163–176PubMedCrossRef Abrishami V, Vargas J, Li X, Cheng Y, Marabini R, Sorzano CO, Carazo JM (2015) Alignment of direct detection device micrographs using a robust optical flow approach. J Struct Biol 189:163–176PubMedCrossRef
30.
go back to reference de la Rosa-Trevin JM, Oton J, Marabini R, Zaldivar A, Vargas J, Carazo JM, Sorzano CO (2013) Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol 184:321–328PubMedCrossRef de la Rosa-Trevin JM, Oton J, Marabini R, Zaldivar A, Vargas J, Carazo JM, Sorzano CO (2013) Xmipp 3.0: an improved software suite for image processing in electron microscopy. J Struct Biol 184:321–328PubMedCrossRef
31.
go back to reference Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637PubMedPubMedCentralCrossRef Brilot AF, Chen JZ, Cheng A, Pan J, Harrison SC, Potter CS, Carragher B, Henderson R, Grigorieff N (2012) Beam-induced motion of vitrified specimen on holey carbon film. J Struct Biol 177:630–637PubMedPubMedCentralCrossRef
32.
go back to reference Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D, Veesler D, Pan J, Harrison SC, Potter CS, Carragher B, Grigorieff N (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–1828PubMedPubMedCentralCrossRef Campbell MG, Cheng A, Brilot AF, Moeller A, Lyumkis D, Veesler D, Pan J, Harrison SC, Potter CS, Carragher B, Grigorieff N (2012) Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure 20:1823–1828PubMedPubMedCentralCrossRef
34.
35.
go back to reference Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60PubMedCrossRef Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter CS, Carragher B (2005) Automated molecular microscopy: the new Leginon system. J Struct Biol 151:41–60PubMedCrossRef
36.
go back to reference Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51PubMedCrossRef Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51PubMedCrossRef
37.
go back to reference Li X, Zheng S, Agard DA, Cheng Y (2015) Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. J Struct Biol 192:174–178PubMedPubMedCentralCrossRef Li X, Zheng S, Agard DA, Cheng Y (2015) Asynchronous data acquisition and on-the-fly analysis of dose fractionated cryoEM images by UCSFImage. J Struct Biol 192:174–178PubMedPubMedCentralCrossRef
38.
go back to reference Zhang J, Nakamura N, Shimizu Y, Liang N, Liu X, Jakana J, Marsh MP, Booth CR, Shinkawa T, Nakata M, Chiu W (2009) JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles. J Struct Biol 165:1–9PubMedCrossRef Zhang J, Nakamura N, Shimizu Y, Liang N, Liu X, Jakana J, Marsh MP, Booth CR, Shinkawa T, Nakata M, Chiu W (2009) JADAS: a customizable automated data acquisition system and its application to ice-embedded single particles. J Struct Biol 165:1–9PubMedCrossRef
39.
go back to reference Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, Pulokas J, Yoshioka C, Irving C, Mulder A, Lau PW, Lyumkis D, Potter CS, Carragher B (2009) Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166:95–102PubMedPubMedCentralCrossRef Lander GC, Stagg SM, Voss NR, Cheng A, Fellmann D, Pulokas J, Yoshioka C, Irving C, Mulder A, Lau PW, Lyumkis D, Potter CS, Carragher B (2009) Appion: an integrated, database-driven pipeline to facilitate EM image processing. J Struct Biol 166:95–102PubMedPubMedCentralCrossRef
40.
go back to reference Hoppe W (1983) Electron-diffraction with the transmission electron-microscope as a phase-determining diffractometer—from spatial-frequency filtering to the 3-Dimensional structure-analysis of ribosomes. Angew Chem Int Edit 22:456–485CrossRef Hoppe W (1983) Electron-diffraction with the transmission electron-microscope as a phase-determining diffractometer—from spatial-frequency filtering to the 3-Dimensional structure-analysis of ribosomes. Angew Chem Int Edit 22:456–485CrossRef
42.
go back to reference Erickson HP, Klug A (1971) Measurement and compensation of defocusing and aberrations by fourier processing of electron micrographs. Philos T Roy Soc B. 261:105–118CrossRef Erickson HP, Klug A (1971) Measurement and compensation of defocusing and aberrations by fourier processing of electron micrographs. Philos T Roy Soc B. 261:105–118CrossRef
43.
go back to reference Wade RH (1992) A brief look at imaging and contrast transfer. Ultramicroscopy 46:145–156CrossRef Wade RH (1992) A brief look at imaging and contrast transfer. Ultramicroscopy 46:145–156CrossRef
47.
go back to reference Mallick SP, Carragher B, Potter CS, Kriegman DJ (2005) ACE: automated CTF estimation. Ultramicroscopy 104:8–29PubMedCrossRef Mallick SP, Carragher B, Potter CS, Kriegman DJ (2005) ACE: automated CTF estimation. Ultramicroscopy 104:8–29PubMedCrossRef
48.
go back to reference Roseman AM (2004) FindEM–a fast, efficient program for automatic selection of particles from electron micrographs. J Struct Biol 145:91–99PubMedCrossRef Roseman AM (2004) FindEM–a fast, efficient program for automatic selection of particles from electron micrographs. J Struct Biol 145:91–99PubMedCrossRef
49.
go back to reference Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46PubMedCrossRef Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157:38–46PubMedCrossRef
50.
go back to reference Ludtke SJ, Bell JM, Chen M, Baldwin PR, Ludtke SJ (2016) Single-particle refinement and variability analysis in EMAN2.1, high resolution single particle refinement in EMAN2.1. Methods Enzymol 579:159–189PubMedPubMedCentralCrossRef Ludtke SJ, Bell JM, Chen M, Baldwin PR, Ludtke SJ (2016) Single-particle refinement and variability analysis in EMAN2.1, high resolution single particle refinement in EMAN2.1. Methods Enzymol 579:159–189PubMedPubMedCentralCrossRef
51.
go back to reference van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24PubMedCrossRef van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24PubMedCrossRef
52.
go back to reference Smith JM (1999) Ximdisp–a visualization tool to aid structure determination from electron microscope images. J Struct Biol 125:223–228PubMedCrossRef Smith JM (1999) Ximdisp–a visualization tool to aid structure determination from electron microscope images. J Struct Biol 125:223–228PubMedCrossRef
53.
go back to reference Wood C, Burnley T, Patwardhan A, Scheres S, Topf M, Roseman A, Winn M (2015) Collaborative computational project for electron cryo-microscopy. Acta Crystallogr D Biol Crystallogr 71:123–126PubMedPubMedCentralCrossRef Wood C, Burnley T, Patwardhan A, Scheres S, Topf M, Roseman A, Winn M (2015) Collaborative computational project for electron cryo-microscopy. Acta Crystallogr D Biol Crystallogr 71:123–126PubMedPubMedCentralCrossRef
54.
go back to reference Burnley T, Palmer CM, Winn M (2017) Recent developments in the CCP-EM software suite. Acta Crystallogr Sect D Struct Biol 73:469–477CrossRef Burnley T, Palmer CM, Winn M (2017) Recent developments in the CCP-EM software suite. Acta Crystallogr Sect D Struct Biol 73:469–477CrossRef
56.
go back to reference Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296PubMedCrossRef Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA (2017) cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296PubMedCrossRef
57.
59.
go back to reference Hoang TV, Cavin X, Schultz P, Ritchie DW (2013) gEMpicker: a highly parallel GPU-accelerated particle picking tool for cryo-electron microscopy. BMC Struct Biol 13:25PubMedPubMedCentralCrossRef Hoang TV, Cavin X, Schultz P, Ritchie DW (2013) gEMpicker: a highly parallel GPU-accelerated particle picking tool for cryo-electron microscopy. BMC Struct Biol 13:25PubMedPubMedCentralCrossRef
60.
go back to reference Chen JZ, Grigorieff N (2007) SIGNATURE: a single-particle selection system for molecular electron microscopy. J Struct Biol 157:168–173PubMedCrossRef Chen JZ, Grigorieff N (2007) SIGNATURE: a single-particle selection system for molecular electron microscopy. J Struct Biol 157:168–173PubMedCrossRef
61.
go back to reference Henderson R (2013) Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Nat Acad Sci USA 110:18037–18041CrossRef Henderson R (2013) Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Nat Acad Sci USA 110:18037–18041CrossRef
62.
go back to reference De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134PubMedCrossRef De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134PubMedCrossRef
63.
go back to reference Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199PubMedCrossRef Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199PubMedCrossRef
64.
go back to reference Zivanov J, Nakane T, Scheres S (2018) A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis, bioRxiv Zivanov J, Nakane T, Scheres S (2018) A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis, bioRxiv
65.
go back to reference Lyumkis D, Brilot AF, Theobald DL, Grigorieff N (2013) Likelihood-based classification of cryo-EM images using FREALIGN. J Struct Biol 183:377–388PubMedCrossRef Lyumkis D, Brilot AF, Theobald DL, Grigorieff N (2013) Likelihood-based classification of cryo-EM images using FREALIGN. J Struct Biol 183:377–388PubMedCrossRef
66.
go back to reference de la Rosa-Trevin JM, Quintana A, Del Cano L, Zaldivar A, Foche I, Gutierrez J, Gomez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, Oton J, Sharov G, Vilas JL, Navas J, Conesa P, Kazemi M, Marabini R, Sorzano CO, Carazo JM (2016) Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 195:93–99PubMedCrossRef de la Rosa-Trevin JM, Quintana A, Del Cano L, Zaldivar A, Foche I, Gutierrez J, Gomez-Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V, Vargas J, Oton J, Sharov G, Vilas JL, Navas J, Conesa P, Kazemi M, Marabini R, Sorzano CO, Carazo JM (2016) Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy. J Struct Biol 195:93–99PubMedCrossRef
67.
go back to reference Frank J, Shimkin B, Dowse H (1981) Spider—a modular software system for electron image processing. Ultramicroscopy 6:343–357CrossRef Frank J, Shimkin B, Dowse H (1981) Spider—a modular software system for electron image processing. Ultramicroscopy 6:343–357CrossRef
68.
go back to reference van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194PubMed van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194PubMed
70.
go back to reference Van Heel M (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21:111–123PubMedCrossRef Van Heel M (1987) Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21:111–123PubMedCrossRef
71.
go back to reference Penczek PA, Grassucci RA, Frank J (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53:251–270PubMedCrossRef Penczek PA, Grassucci RA, Frank J (1994) The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53:251–270PubMedCrossRef
72.
go back to reference Radermacher M, Wagenknecht T, Verschoor A, Frank J (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146:113–136PubMedCrossRef Radermacher M, Wagenknecht T, Verschoor A, Frank J (1987) Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146:113–136PubMedCrossRef
74.
go back to reference Natesh R, Clare DK, Farr GW, Horwich AL, Saibil HR (2018) A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Int J Biol Macromol 118:671–675PubMedPubMedCentralCrossRef Natesh R, Clare DK, Farr GW, Horwich AL, Saibil HR (2018) A two-domain folding intermediate of RuBisCO in complex with the GroEL chaperonin. Int J Biol Macromol 118:671–675PubMedPubMedCentralCrossRef
75.
go back to reference Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA, Zhu X, Grigorieff N, Milne JLS, Sapiro G, Wu X, Subramaniam S (2018) Atomic resolution cryo-EM structure of beta-galactosidase. Structure 26(848–856):e3 Bartesaghi A, Aguerrebere C, Falconieri V, Banerjee S, Earl LA, Zhu X, Grigorieff N, Milne JLS, Sapiro G, Wu X, Subramaniam S (2018) Atomic resolution cryo-EM structure of beta-galactosidase. Structure 26(848–856):e3
77.
go back to reference Harauz G, van Heel M (1986) Exact filters for general geometry three-dimensional reconstruction. Optik 73:146–156 Harauz G, van Heel M (1986) Exact filters for general geometry three-dimensional reconstruction. Optik 73:146–156
78.
go back to reference van Heel M, Schatz M (2005) Fourier shell correlation threshold criteria. J Struct Biol 151:250–262PubMedCrossRef van Heel M, Schatz M (2005) Fourier shell correlation threshold criteria. J Struct Biol 151:250–262PubMedCrossRef
79.
go back to reference Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745PubMedCrossRef Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721–745PubMedCrossRef
80.
go back to reference Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schroder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL (2012) Outcome of the first electron microscopy validation task force meeting. Structure 20:205–214PubMedCrossRef Henderson R, Sali A, Baker ML, Carragher B, Devkota B, Downing KH, Egelman EH, Feng Z, Frank J, Grigorieff N, Jiang W, Ludtke SJ, Medalia O, Penczek PA, Rosenthal PB, Rossmann MG, Schmid MF, Schroder GF, Steven AC, Stokes DL, Westbrook JD, Wriggers W, Yang H, Young J, Berman HM, Chiu W, Kleywegt GJ, Lawson CL (2012) Outcome of the first electron microscopy validation task force meeting. Structure 20:205–214PubMedCrossRef
81.
go back to reference Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65PubMedCrossRef Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63–65PubMedCrossRef
82.
go back to reference Cardone G, Heymann JB, Steven AC (2013) One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J Struct Biol 184:226–236PubMedCrossRef Cardone G, Heymann JB, Steven AC (2013) One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. J Struct Biol 184:226–236PubMedCrossRef
83.
go back to reference Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA, Ramakumar S (2003) Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small-molecule accuracy. Acta Crystallogr D Biol Crystallogr 59:105–117PubMedCrossRef Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA, Ramakumar S (2003) Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small-molecule accuracy. Acta Crystallogr D Biol Crystallogr 59:105–117PubMedCrossRef
84.
go back to reference Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA (1999) Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J Mol Biol 288:999–1012PubMedCrossRef Natesh R, Bhanumoorthy P, Vithayathil PJ, Sekar K, Ramakumar S, Viswamitra MA (1999) Crystal structure at 1.8 A resolution and proposed amino acid sequence of a thermostable xylanase from Thermoascus aurantiacus. J Mol Biol 288:999–1012PubMedCrossRef
85.
go back to reference Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMed Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMed
86.
go back to reference Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRef Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132PubMedCrossRef
87.
go back to reference Jones TA (2004) Interactive electron-density map interpretation: from INTER to O. Acta Crystallogr D Biol Crystallogr 60:2115–2125PubMedCrossRef Jones TA (2004) Interactive electron-density map interpretation: from INTER to O. Acta Crystallogr D Biol Crystallogr 60:2115–2125PubMedCrossRef
88.
go back to reference Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G (2016) Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr D Biol Crystallogr 71:136–153CrossRef Brown A, Long F, Nicholls RA, Toots J, Emsley P, Murshudov G (2016) Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr D Biol Crystallogr 71:136–153CrossRef
89.
go back to reference Echols N, Moriarty NW, Klei HE, Afonine PV, Bunkoczi G, Headd JJ, McCoy AJ, Oeffner RD, Read RJ, Terwilliger TC, Adams PD (2014) Automating crystallographic structure solution and refinement of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 70:144–154PubMedCrossRef Echols N, Moriarty NW, Klei HE, Afonine PV, Bunkoczi G, Headd JJ, McCoy AJ, Oeffner RD, Read RJ, Terwilliger TC, Adams PD (2014) Automating crystallographic structure solution and refinement of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 70:144–154PubMedCrossRef
90.
go back to reference Baker ML, Baker MR, Hryc CF, Ju T, Chiu W (2012) Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Biopolymers 97:655–668PubMedPubMedCentralCrossRef Baker ML, Baker MR, Hryc CF, Ju T, Chiu W (2012) Gorgon and pathwalking: macromolecular modeling tools for subnanometer resolution density maps. Biopolymers 97:655–668PubMedPubMedCentralCrossRef
91.
go back to reference Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16:295–307PubMedPubMedCentralCrossRef Topf M, Lasker K, Webb B, Wolfson H, Chiu W, Sali A (2008) Protein structure fitting and refinement guided by cryo-EM density. Structure 16:295–307PubMedPubMedCentralCrossRef
92.
go back to reference Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M (2016) Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. Methods 100:42–49PubMedPubMedCentralCrossRef Joseph AP, Malhotra S, Burnley T, Wood C, Clare DK, Winn M, Topf M (2016) Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment. Methods 100:42–49PubMedPubMedCentralCrossRef
93.
go back to reference Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K (2009) Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49:174–180PubMedPubMedCentralCrossRef Trabuco LG, Villa E, Schreiner E, Harrison CB, Schulten K (2009) Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49:174–180PubMedPubMedCentralCrossRef
94.
go back to reference Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28 Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–8):27–28
95.
go back to reference Schrodinger LLC (2015) The PyMOL molecular graphics system, Version 1.8 in Schrodinger LLC (2015) The PyMOL molecular graphics system, Version 1.8 in
96.
go back to reference Brunger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475PubMedCrossRef Brunger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355:472–475PubMedCrossRef
97.
go back to reference Shaikh TR, Hegerl R, Frank J (2003) An approach to examining model dependence in EM reconstructions using cross-validation. J Struct Biol 142:301–310PubMedCrossRef Shaikh TR, Hegerl R, Frank J (2003) An approach to examining model dependence in EM reconstructions using cross-validation. J Struct Biol 142:301–310PubMedCrossRef
98.
go back to reference Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135:24–35PubMedPubMedCentralCrossRef Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135:24–35PubMedPubMedCentralCrossRef
99.
go back to reference Rosenthal PB, Rubinstein JL (2015) Validating maps from single particle electron cryomicroscopy. Curr Opin Struct Biol 34:135–144PubMedCrossRef Rosenthal PB, Rubinstein JL (2015) Validating maps from single particle electron cryomicroscopy. Curr Opin Struct Biol 34:135–144PubMedCrossRef
101.
102.
go back to reference Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M (2015) TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J Appl Crystallogr 48:1314–1323PubMedPubMedCentralCrossRef Farabella I, Vasishtan D, Joseph AP, Pandurangan AP, Sahota H, Topf M (2015) TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits. J Appl Crystallogr 48:1314–1323PubMedPubMedCentralCrossRef
103.
go back to reference Henderson R, Chen S, Chen JZ, Grigorieff N, Passmore LA, Ciccarelli L, Rubinstein JL, Crowther RA, Stewart PL, Rosenthal PB (2011) Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy. J Mol Biol 413:1028–1046PubMedPubMedCentralCrossRef Henderson R, Chen S, Chen JZ, Grigorieff N, Passmore LA, Ciccarelli L, Rubinstein JL, Crowther RA, Stewart PL, Rosenthal PB (2011) Tilt-pair analysis of images from a range of different specimens in single-particle electron cryomicroscopy. J Mol Biol 413:1028–1046PubMedPubMedCentralCrossRef
105.
go back to reference Elmlund D, Le SN, Elmlund H (2017) High-resolution cryo-EM: the nuts and bolts. Curr Opin Struct Biol 46:1–6PubMedCrossRef Elmlund D, Le SN, Elmlund H (2017) High-resolution cryo-EM: the nuts and bolts. Curr Opin Struct Biol 46:1–6PubMedCrossRef
106.
go back to reference Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114:123–134PubMedCrossRef Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114:123–134PubMedCrossRef
107.
go back to reference Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245PubMedCrossRef Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245PubMedCrossRef
108.
go back to reference White HE, Orlova EV, Chen S, Wang L, Ignatiou A, Gowen B, Stromer T, Franzmann TM, Haslbeck M, Buchner J, Saibil HR (2006) Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure. 14:1197–1204PubMedCrossRef White HE, Orlova EV, Chen S, Wang L, Ignatiou A, Gowen B, Stromer T, Franzmann TM, Haslbeck M, Buchner J, Saibil HR (2006) Multiple distinct assemblies reveal conformational flexibility in the small heat shock protein Hsp26. Structure. 14:1197–1204PubMedCrossRef
109.
go back to reference White HE, Saibil HR, Ignatiou A, Orlova EV (2004) Recognition and separation of single particles with size variation by statistical analysis of their images. J Mol Biol 336:453–460PubMedCrossRef White HE, Saibil HR, Ignatiou A, Orlova EV (2004) Recognition and separation of single particles with size variation by statistical analysis of their images. J Mol Biol 336:453–460PubMedCrossRef
110.
go back to reference Elad N, Clare DK, Saibil HR, Orlova EV (2008) Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J Struct Biol 162:108–120PubMedCrossRef Elad N, Clare DK, Saibil HR, Orlova EV (2008) Detection and separation of heterogeneity in molecular complexes by statistical analysis of their two-dimensional projections. J Struct Biol 162:108–120PubMedCrossRef
111.
go back to reference Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR (2007) Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 26:415–426PubMedPubMedCentralCrossRef Elad N, Farr GW, Clare DK, Orlova EV, Horwich AL, Saibil HR (2007) Topologies of a substrate protein bound to the chaperonin GroEL. Mol Cell 26:415–426PubMedPubMedCentralCrossRef
112.
go back to reference Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP, Frank J, Carazo JM (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29PubMedCrossRef Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP, Frank J, Carazo JM (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27–29PubMedCrossRef
113.
go back to reference Nakane T, Kimanius D, Lindahl E, Scheres SH (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife. 7:1–18CrossRef Nakane T, Kimanius D, Lindahl E, Scheres SH (2018) Characterisation of molecular motions in cryo-EM single-particle data by multi-body refinement in RELION. Elife. 7:1–18CrossRef
114.
go back to reference da Fonseca PC, Morris EP (2015) Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core. Nat Commun 6:7573PubMedCrossRef da Fonseca PC, Morris EP (2015) Cryo-EM reveals the conformation of a substrate analogue in the human 20S proteasome core. Nat Commun 6:7573PubMedCrossRef
115.
go back to reference Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H (2015) Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520:567–570PubMedCrossRef Fischer N, Neumann P, Konevega AL, Bock LV, Ficner R, Rodnina MV, Stark H (2015) Structure of the E. coli ribosome-EF-Tu complex at <3 Å resolution by Cs-corrected cryo-EM. Nature 520:567–570PubMedCrossRef
Metadata
Title
Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design
Author
Ramanathan Natesh
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-05282-9_12

Premium Partner