Skip to main content
Top
Published in:

29-01-2022 | Research Article

Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model

Authors: Rongrong Fu, Dong Xu, Weishuai Li, Peiming Shi

Published in: Cognitive Neurodynamics | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Spatial filtering is widely used in brain-computer interface (BCI) systems to augmented signal characteristics of electroencephalogram (EEG) signals. In this study, a spatial domain filtering based EEG feature extraction method, optimal discriminant hyperplane—common spatial subspace decomposition (ODH—CSSD) is proposed. Specifically, the multi-dimensional EEG features were extracted from the original EEG signals by common space subspace decomposition (CSSD) algorithm, and the optimal feature criterion was established to find the multi-dimensional optimal projection space. A classic method of data dimension optimizing is using the eigenvectors of a lumped covariance matrix corresponding to the maximum eigenvalues. Then, the cost function is defined as the extreme value of the discriminant criterion, and the orthogonal N discriminant vectors corresponding to the N extreme value of the criterion are solved and constructed into the N-dimensional optimal feature space. Finally, the multi-dimensional EEG features are projected into the N-dimensional optimal projection space to obtain the optimal N-dimensional EEG features. Moreover, this study involves the extraction of two-dimensional and three-dimensional optimal EEG features from motor imagery EEG datasets, and the optimal EEG features are identified using the interpretable discriminative rectangular mixture model (DRMM). Experimental results show that the accuracy of DRMM to identify two-dimensional optimal features is more than 0.91, and the highest accuracy even reaches 0.975. Meanwhile, DRMM has the most stable recognition accuracy for two-dimensional optimal features, and its average clustering accuracy reaches 0.942, the gap between the accuracy of the DRMM with the accuracy of the FCM and K-means can reach 0.26. And the optimal three-dimensional features, for most subjects, the clustering accuracy of DRMM is higher than that of FCM and K-means. In general, the decision rectangle obtained by DRMM can clearly explain the difference of each cluster, notably, the optimization of multidimensional EEG features by optimal projection is superior to Fisher's ratio, and this method provides an alternative for the application of BCI.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Aghaei AS, Mahanta MS, Plataniotis KN (2015) Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Trans Biomed Eng 63(1):15–29CrossRef Aghaei AS, Mahanta MS, Plataniotis KN (2015) Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Trans Biomed Eng 63(1):15–29CrossRef
go back to reference Agrawal A, Tripathy BK (2019) Efficiency analysis of hybrid fuzzy C-means clustering algorithms and their application to compute the severity of disease in plant leaves. Comput Rev J 3:156–169 Agrawal A, Tripathy BK (2019) Efficiency analysis of hybrid fuzzy C-means clustering algorithms and their application to compute the severity of disease in plant leaves. Comput Rev J 3:156–169
go back to reference Ahmed SRA, Al Barazanchi I, Jaaz ZA, Abdulshaheed HR (2019) Clustering algorithms subjected to K-mean and gaussian mixture model on multidimensional data set. Period Eng Nat Sci 7(2):448–457 Ahmed SRA, Al Barazanchi I, Jaaz ZA, Abdulshaheed HR (2019) Clustering algorithms subjected to K-mean and gaussian mixture model on multidimensional data set. Period Eng Nat Sci 7(2):448–457
go back to reference Bishop CM (2006) Pattern recognition and machine learning, chapter 9, mixture models and EM. Springer Science+ Business Media, Berlin Bishop CM (2006) Pattern recognition and machine learning, chapter 9, mixture models and EM. Springer Science+ Business Media, Berlin
go back to reference Chen JX, Jiang DM, Zhang YN (2019) A common spatial pattern and wavelet packet decomposition combined method for EEG-based emotion recognition. J Adv Comput Intell Intell Inform 23(2):274–281CrossRef Chen JX, Jiang DM, Zhang YN (2019) A common spatial pattern and wavelet packet decomposition combined method for EEG-based emotion recognition. J Adv Comput Intell Intell Inform 23(2):274–281CrossRef
go back to reference Foley DH, Sammon JW (1975) An optimal set of discriminant vectors. IEEE Trans Comput 100(3):281–289CrossRef Foley DH, Sammon JW (1975) An optimal set of discriminant vectors. IEEE Trans Comput 100(3):281–289CrossRef
go back to reference Fu YF, Xiong X, Jiang CH, Xu BL, Li YC, Li HY (2016) Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG. IEEE Trans Neural Syst Rehabil Eng 25(9):1641–1652CrossRef Fu YF, Xiong X, Jiang CH, Xu BL, Li YC, Li HY (2016) Imagined hand clenching force and speed modulate brain activity and are classified by NIRS combined with EEG. IEEE Trans Neural Syst Rehabil Eng 25(9):1641–1652CrossRef
go back to reference Kshirsagar GB, Londhe ND (2018) Improving performance of Devanagari script input-based P300 speller using deep learning. IEEE Trans Biomed Eng 66(11):2992–3005CrossRef Kshirsagar GB, Londhe ND (2018) Improving performance of Devanagari script input-based P300 speller using deep learning. IEEE Trans Biomed Eng 66(11):2992–3005CrossRef
go back to reference Li Y, Gao XR, Liu HS, Gao SK (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6):1019–1025CrossRef Li Y, Gao XR, Liu HS, Gao SK (2004) Classification of single-trial electroencephalogram during finger movement. IEEE Trans Biomed Eng 51(6):1019–1025CrossRef
go back to reference MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability. Vol. 1, No. 14, pp. 281–297 MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley symposium on mathematical statistics and probability. Vol. 1, No. 14, pp. 281–297
go back to reference Meng JJ, Yao L, Sheng XJ, Zhang DG, Zhu XY (2014) Simultaneously optimizing spatial spectral features based on mutual information for EEG classification. IEEE Trans Biomed Eng 62(1):227–240CrossRef Meng JJ, Yao L, Sheng XJ, Zhang DG, Zhu XY (2014) Simultaneously optimizing spatial spectral features based on mutual information for EEG classification. IEEE Trans Biomed Eng 62(1):227–240CrossRef
go back to reference Mishchenko Y, Kaya M, Ozbay E, Yanar H (2018) Developing a three-to six-state EEG-based brain-computer interface for a virtual robotic manipulator control. IEEE Trans Biomed Eng 66(4):977–987CrossRef Mishchenko Y, Kaya M, Ozbay E, Yanar H (2018) Developing a three-to six-state EEG-based brain-computer interface for a virtual robotic manipulator control. IEEE Trans Biomed Eng 66(4):977–987CrossRef
go back to reference Mishuhina V, Jiang XD (2018) Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process Lett 25(6):783–787CrossRef Mishuhina V, Jiang XD (2018) Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Process Lett 25(6):783–787CrossRef
go back to reference Sun HW, Fu YF, Xiong X, Yang J, Liu CW, Yu ZT (2015) Identification of EEG induced by motor imagery based on hilbert-huang transform. Acta Automatica Sinica 41(9):1686–1692 Sun HW, Fu YF, Xiong X, Yang J, Liu CW, Yu ZT (2015) Identification of EEG induced by motor imagery based on hilbert-huang transform. Acta Automatica Sinica 41(9):1686–1692
go back to reference Wang S, Gittens A, Mahoney MW (2019) Scalable kernel K-means clustering with Nyström approximation: relative-error bounds. J Mach Learn Res 20(1):431–479 Wang S, Gittens A, Mahoney MW (2019) Scalable kernel K-means clustering with Nyström approximation: relative-error bounds. J Mach Learn Res 20(1):431–479
go back to reference Wu W, Gao XR, Hong B, Gao SK (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55(6):1733–1743CrossRef Wu W, Gao XR, Hong B, Gao SK (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55(6):1733–1743CrossRef
go back to reference Wu W, Chen Z, Gao XR, Li YQ, Brown EN, Gao SK (2014) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653CrossRef Wu W, Chen Z, Gao XR, Li YQ, Brown EN, Gao SK (2014) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653CrossRef
go back to reference Wu DR, King JT, Chuang CH, Lin CT, Jung TP (2017) Spatial filtering for EEG-based regression problems in brain–computer interface (BCI). IEEE Trans Fuzzy Syst 26(2):771–781CrossRef Wu DR, King JT, Chuang CH, Lin CT, Jung TP (2017) Spatial filtering for EEG-based regression problems in brain–computer interface (BCI). IEEE Trans Fuzzy Syst 26(2):771–781CrossRef
go back to reference Zhang C, Wang H, Wu MH (2013) EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr Comput-aided Eng 20(4):391–405CrossRef Zhang C, Wang H, Wu MH (2013) EEG-based expert system using complexity measures and probability density function control in alpha sub-band. Integr Comput-aided Eng 20(4):391–405CrossRef
Metadata
Title
Single-trial motor imagery electroencephalogram intention recognition by optimal discriminant hyperplane and interpretable discriminative rectangle mixture model
Authors
Rongrong Fu
Dong Xu
Weishuai Li
Peiming Shi
Publication date
29-01-2022
Publisher
Springer Netherlands
Published in
Cognitive Neurodynamics / Issue 5/2022
Print ISSN: 1871-4080
Electronic ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-021-09768-w

Other articles of this Issue 5/2022

Cognitive Neurodynamics 5/2022 Go to the issue