Skip to main content
Top

Hint

Swipe to navigate through the chapters of this book

2019 | OriginalPaper | Chapter

Singular Cucker–Smale Dynamics

Authors : Piotr Minakowski, Piotr B. Mucha, Jan Peszek, Ewelina Zatorska

Published in: Active Particles, Volume 2

Publisher: Springer International Publishing

share
SHARE

Abstract

This chapter is dedicated to the singular models of flocking. We give an overview of the existing literature starting from microscopic Cucker–Smale (CS) model with singular communication weight, through its mesoscopic mean-field limit, up to the corresponding macroscopic regime. For the microscopic CS model and its selected variants, the collision-avoidance phenomenon is discussed. For the kinetic mean-field model, we sketch the existence of global-in-time measure-valued solutions, paying special attention to weak-atomic uniqueness of solutions. Ultimately, for the macroscopic singular model, we provide a summary of existence results for the Euler-type alignment system. This includes the existence of strong solutions on a one-dimensional torus, and the extension of this result to higher dimensions by restricting the size of the initial data. Additionally, we present the pressureless Navier–Stokes-type system corresponding to particular choice of alignment kernel. This system is then compared—analytically and numerically—to the porous medium equation.

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe



 


Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko





Jetzt 90 Tage mit der neuen Mini-Lizenz testen!

Footnotes
1
Which exists by Theorem 3.2.
 
2
See, for example, the Olympic Rings symbol simulated in the video available at https://​youtu.​be/​C7UDGRudsyA, produced within the work [20] through the manipulation of z i.
 
Literature
1.
go back to reference S. M. Ahn, H. Choi, S.-Y. Ha, and H. Lee. On collision-avoiding initial configurations to Cucker-Smale type flocking models. Commun. Math. Sci., 10(2):625–643, 2012. MathSciNetMATHCrossRef S. M. Ahn, H. Choi, S.-Y. Ha, and H. Lee. On collision-avoiding initial configurations to Cucker-Smale type flocking models. Commun. Math. Sci., 10(2):625–643, 2012. MathSciNetMATHCrossRef
2.
go back to reference H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang. Time-asymptotic interaction of flocking particles and an incompressible viscous fluid. Nonlinearity, 25(4):1155–1177, 2012. MathSciNetMATHCrossRef H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang. Time-asymptotic interaction of flocking particles and an incompressible viscous fluid. Nonlinearity, 25(4):1155–1177, 2012. MathSciNetMATHCrossRef
3.
go back to reference H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang. Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J. Differential Equations, 257(6):2225–2255, 2014. MathSciNetMATHCrossRef H.-O. Bae, Y.-P. Choi, S.-Y. Ha, and M.-J. Kang. Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J. Differential Equations, 257(6):2225–2255, 2014. MathSciNetMATHCrossRef
5.
go back to reference J. Barré, J. Carrillo, P. Degond, D. Peurichard, and E. Zatorska. Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions. J. Nonlinear Sci., 28(1):235–268, 2018. MathSciNetMATHCrossRef J. Barré, J. Carrillo, P. Degond, D. Peurichard, and E. Zatorska. Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions. J. Nonlinear Sci., 28(1):235–268, 2018. MathSciNetMATHCrossRef
6.
go back to reference N. Bellomo and S.-Y. Ha. A quest toward a mathematical theory of the dynamics of swarms. Math. Models Methods Appl. Sci., 27(4):745–770, 2017. MathSciNetMATHCrossRef N. Bellomo and S.-Y. Ha. A quest toward a mathematical theory of the dynamics of swarms. Math. Models Methods Appl. Sci., 27(4):745–770, 2017. MathSciNetMATHCrossRef
7.
go back to reference F. Bolley, J. A. Cañizo, and J. A. Carrillo. Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci., 21(11):2179–2210, 2011. MathSciNetMATHCrossRef F. Bolley, J. A. Cañizo, and J. A. Carrillo. Stochastic mean-field limit: non-Lipschitz forces and swarming. Math. Models Methods Appl. Sci., 21(11):2179–2210, 2011. MathSciNetMATHCrossRef
8.
go back to reference D. Bresch and B. Desjardins. Existence of global weak solutions for a 2d viscous shallow water equations and convergence to the quasi-geostrophic model. Communications in Mathematical Physics, 238(1):211–223, Jul 2003. MathSciNetMATHCrossRef D. Bresch and B. Desjardins. Existence of global weak solutions for a 2d viscous shallow water equations and convergence to the quasi-geostrophic model. Communications in Mathematical Physics, 238(1):211–223, Jul 2003. MathSciNetMATHCrossRef
9.
go back to reference J. A. Cañizo, J. A. Carrillo, and J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci., 21(3):515–539, 2011. MathSciNetMATHCrossRef J. A. Cañizo, J. A. Carrillo, and J. Rosado. A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci., 21(3):515–539, 2011. MathSciNetMATHCrossRef
10.
go back to reference J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1):218–236, 2010. MathSciNetMATHCrossRef J. A. Carrillo, M. Fornasier, J. Rosado, and G. Toscani. Asymptotic flocking dynamics for the kinetic Cucker-Smale model. SIAM J. Math. Anal., 42(1):218–236, 2010. MathSciNetMATHCrossRef
11.
go back to reference J. A. Carrillo, Y.-P. Choi, and M. Hauray. Local well-posedness of the generalized Cucker-Smale model with singular kernels. In MMCS, Mathematical modelling of complex systems, volume 47 of ESAIM Proc. Surveys, pages 17–35. EDP Sci., Les Ulis, 2014. J. A. Carrillo, Y.-P. Choi, and M. Hauray. Local well-posedness of the generalized Cucker-Smale model with singular kernels. In MMCS, Mathematical modelling of complex systems, volume 47 of ESAIM Proc. Surveys, pages 17–35. EDP Sci., Les Ulis, 2014.
12.
go back to reference J. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem. Mean-field limit for collective behavior models with sharp sensitivity regions. Journal of the European Mathematical Society, 21(1):121–161, 2018. MathSciNetMATHCrossRef J. Carrillo, Y.-P. Choi, M. Hauray, and S. Salem. Mean-field limit for collective behavior models with sharp sensitivity regions. Journal of the European Mathematical Society, 21(1):121–161, 2018. MathSciNetMATHCrossRef
13.
go back to reference J. A. Carrillo, Y.-P. Choi, P. B. Mucha, and J. Peszek. Sharp conditions to avoid collisions in singular Cucker-Smale interactions. Nonlinear Anal. Real World Appl., 37:317–328, 2017. MathSciNetMATHCrossRef J. A. Carrillo, Y.-P. Choi, P. B. Mucha, and J. Peszek. Sharp conditions to avoid collisions in singular Cucker-Smale interactions. Nonlinear Anal. Real World Appl., 37:317–328, 2017. MathSciNetMATHCrossRef
14.
go back to reference J. A. Carrillo, Y.-P. Choi, E. Tadmor, and C. Tan. Critical thresholds in 1D Euler equations with non-local forces. Math. Models Methods Appl. Sci., 26(1):185–206, 2016. MathSciNetMATHCrossRef J. A. Carrillo, Y.-P. Choi, E. Tadmor, and C. Tan. Critical thresholds in 1D Euler equations with non-local forces. Math. Models Methods Appl. Sci., 26(1):185–206, 2016. MathSciNetMATHCrossRef
15.
go back to reference J. A. Carrillo, A. Klar, S. Martin, and S. Tiwari. Self-propelled interacting particle systems with roosting force. Math. Models Methods Appl. Sci., 20(suppl. 1):1533–1552, 2010. MathSciNetMATHCrossRef J. A. Carrillo, A. Klar, S. Martin, and S. Tiwari. Self-propelled interacting particle systems with roosting force. Math. Models Methods Appl. Sci., 20(suppl. 1):1533–1552, 2010. MathSciNetMATHCrossRef
16.
go back to reference L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple. A survey of localization in wireless sensor network. International Journal of Distributed Sensor Networks, 8(12):962523, 2012. CrossRef L. Cheng, C. Wu, Y. Zhang, H. Wu, M. Li, and C. Maple. A survey of localization in wireless sensor network. International Journal of Distributed Sensor Networks, 8(12):962523, 2012. CrossRef
17.
18.
go back to reference Y.-P. Choi, S.-Y. Ha, and J. Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Netw. Heterog. Media, 13(3):379–407, 2018. MathSciNetMATHCrossRef Y.-P. Choi, S.-Y. Ha, and J. Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Netw. Heterog. Media, 13(3):379–407, 2018. MathSciNetMATHCrossRef
19.
go back to reference Y.-P. Choi, S.-Y. Ha, and Z. Li. Emergent dynamics of the Cucker-Smale flocking model and its variants. In Active particles. Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., pages 299–331. Birkhäuser/Springer, Cham, 2017. Y.-P. Choi, S.-Y. Ha, and Z. Li. Emergent dynamics of the Cucker-Smale flocking model and its variants. In Active particles. Vol. 1. Advances in theory, models, and applications, Model. Simul. Sci. Eng. Technol., pages 299–331. Birkhäuser/Springer, Cham, 2017.
20.
go back to reference Y.-P. Choi, D. Kalise, J. Peszek, and A. A. Peters. A collisionless singular Cucker-Smale model with decentralized formation control. arXiv:1807.05177, 2018. Y.-P. Choi, D. Kalise, J. Peszek, and A. A. Peters. A collisionless singular Cucker-Smale model with decentralized formation control. arXiv:1807.05177, 2018.
21.
go back to reference P. Constantin and V. Vicol. Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal., 22(5):1289–1321, 2012. MathSciNetMATHCrossRef P. Constantin and V. Vicol. Nonlinear maximum principles for dissipative linear nonlocal operators and applications. Geom. Funct. Anal., 22(5):1289–1321, 2012. MathSciNetMATHCrossRef
22.
go back to reference F. Cucker and J.-G. Dong. On the critical exponent for flocks under hierarchical leadership. Math. Models Methods Appl. Sci., 19(suppl.):1391–1404, 2009. MathSciNetMATHCrossRef F. Cucker and J.-G. Dong. On the critical exponent for flocks under hierarchical leadership. Math. Models Methods Appl. Sci., 19(suppl.):1391–1404, 2009. MathSciNetMATHCrossRef
26.
go back to reference R. Danchin, P. B. Mucha, J. Peszek, and B. Wrblewski. Regular solutions to the fractional Euler alignment system in the Besov spaces framework. Math. Models Methods Appl. Sci., 29(1):89–119, 2019. MathSciNetMATHCrossRef R. Danchin, P. B. Mucha, J. Peszek, and B. Wrblewski. Regular solutions to the fractional Euler alignment system in the Besov spaces framework. Math. Models Methods Appl. Sci., 29(1):89–119, 2019. MathSciNetMATHCrossRef
27.
go back to reference T. Do, A. Kiselev, L. Ryzhik, and C. Tan. Global regularity for the fractional Euler alignment system. Arch. Ration. Mech. Anal., 228(1):1–37, 2018. MathSciNetMATHCrossRef T. Do, A. Kiselev, L. Ryzhik, and C. Tan. Global regularity for the fractional Euler alignment system. Arch. Ration. Mech. Anal., 228(1):1–37, 2018. MathSciNetMATHCrossRef
28.
29.
go back to reference S.-Y. Ha, T. Ha, and J.-H. Kim. Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction. J. Phys. A, 43(31):315201, 19, 2010. MathSciNetMATHCrossRef S.-Y. Ha, T. Ha, and J.-H. Kim. Asymptotic dynamics for the Cucker-Smale-type model with the Rayleigh friction. J. Phys. A, 43(31):315201, 19, 2010. MathSciNetMATHCrossRef
30.
go back to reference S.-Y. Ha, M.-J. Kang, and B. Kwon. A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid. Math. Models Methods Appl. Sci., 24(11):2311–2359, 2014. MathSciNetMATHCrossRef S.-Y. Ha, M.-J. Kang, and B. Kwon. A hydrodynamic model for the interaction of Cucker-Smale particles and incompressible fluid. Math. Models Methods Appl. Sci., 24(11):2311–2359, 2014. MathSciNetMATHCrossRef
31.
go back to reference S.-Y. Ha, M.-J. Kang, and B. Kwon. Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain. SIAM J. Math. Anal., 47(5):3813–3831, 2015. MathSciNetMATHCrossRef S.-Y. Ha, M.-J. Kang, and B. Kwon. Emergent dynamics for the hydrodynamic Cucker-Smale system in a moving domain. SIAM J. Math. Anal., 47(5):3813–3831, 2015. MathSciNetMATHCrossRef
32.
go back to reference S.-Y. Ha and J.-G. Liu. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci., 7(2):297–325, 2009. MathSciNetMATHCrossRef S.-Y. Ha and J.-G. Liu. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit. Commun. Math. Sci., 7(2):297–325, 2009. MathSciNetMATHCrossRef
33.
go back to reference S.-Y. Ha and T. Ruggeri. Emergent dynamics of a thermodynamically consistent particle model. Arch. Ration. Mech. Anal., 223(3):1397–1425, 2017. MathSciNetMATHCrossRef S.-Y. Ha and T. Ruggeri. Emergent dynamics of a thermodynamically consistent particle model. Arch. Ration. Mech. Anal., 223(3):1397–1425, 2017. MathSciNetMATHCrossRef
34.
go back to reference S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models, 1(3):415–435, 2008. MathSciNetMATHCrossRef S.-Y. Ha and E. Tadmor. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models, 1(3):415–435, 2008. MathSciNetMATHCrossRef
35.
go back to reference J. Haskovec. Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions. Phys. D, 261:42–51, 2013. MathSciNetMATHCrossRef J. Haskovec. Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions. Phys. D, 261:42–51, 2013. MathSciNetMATHCrossRef
36.
go back to reference B. Haspot. From the highly compressible Navier–Stokes equations to fast diffusion and porous media equations, existence of global weak solution for the quasi-solutions. Journal of Mathematical Fluid Mechanics, 18(2):243–291, Jun 2016. MathSciNetMATHCrossRef B. Haspot. From the highly compressible Navier–Stokes equations to fast diffusion and porous media equations, existence of global weak solution for the quasi-solutions. Journal of Mathematical Fluid Mechanics, 18(2):243–291, Jun 2016. MathSciNetMATHCrossRef
37.
go back to reference B. Haspot and E. Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation – rate of convergence. Discrete & Continuous Dynamical Systems - A, 36(6):3107–3123, 2016. MathSciNetMATH B. Haspot and E. Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation – rate of convergence. Discrete & Continuous Dynamical Systems - A, 36(6):3107–3123, 2016. MathSciNetMATH
38.
go back to reference S. He and E. Tadmor. Global regularity of two-dimensional flocking hydrodynamics. C. R. Math. Acad. Sci. Paris, 355(7):795–805, 2017. MathSciNetMATHCrossRef S. He and E. Tadmor. Global regularity of two-dimensional flocking hydrodynamics. C. R. Math. Acad. Sci. Paris, 355(7):795–805, 2017. MathSciNetMATHCrossRef
39.
go back to reference A. Jadbabaie, J. Lin, and A. S. Morse. Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules” [IEEE Trans. Automat. Control 48 (2003), no. 6, 988–1001; MR 1986266]. IEEE Trans. Automat. Control, 48(9):1675, 2003. A. Jadbabaie, J. Lin, and A. S. Morse. Correction to: “Coordination of groups of mobile autonomous agents using nearest neighbor rules” [IEEE Trans. Automat. Control 48 (2003), no. 6, 988–1001; MR 1986266]. IEEE Trans. Automat. Control, 48(9):1675, 2003.
40.
go back to reference S. Jiang, Z. Xin, and P. Zhang. Global weak solutions to 1d compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal., 12(3):239–251, 2005. MathSciNetMATH S. Jiang, Z. Xin, and P. Zhang. Global weak solutions to 1d compressible isentropic Navier-Stokes equations with density-dependent viscosity. Methods Appl. Anal., 12(3):239–251, 2005. MathSciNetMATH
41.
go back to reference Q. Jiu and Z. Xin. The Cauchy problem for 1d compressible flows with density-dependent viscosity coefficients, 2008. Q. Jiu and Z. Xin. The Cauchy problem for 1d compressible flows with density-dependent viscosity coefficients, 2008.
42.
go back to reference T. K. Karper, A. Mellet, and K. Trivisa. Hydrodynamic limit of the kinetic Cucker-Smale flocking model. Math. Models Methods Appl. Sci., 25(1):131–163, 2015. MathSciNetMATHCrossRef T. K. Karper, A. Mellet, and K. Trivisa. Hydrodynamic limit of the kinetic Cucker-Smale flocking model. Math. Models Methods Appl. Sci., 25(1):131–163, 2015. MathSciNetMATHCrossRef
43.
go back to reference J. Kim and J. Peszek. Cucker-Smale model with a bonding force and a singular interaction kernel. arXiv:1805.01994, 2018. J. Kim and J. Peszek. Cucker-Smale model with a bonding force and a singular interaction kernel. arXiv:1805.01994, 2018.
44.
go back to reference S. J. Kim, Y. Jeong, S. Park, K. Ryu, and G. Oh. A Survey of Drone use for Entertainment and AVR (Augmented and Virtual Reality), pages 339–352. Springer International Publishing, Cham, 2018. S. J. Kim, Y. Jeong, S. Park, K. Ryu, and G. Oh. A Survey of Drone use for Entertainment and AVR (Augmented and Virtual Reality), pages 339–352. Springer International Publishing, Cham, 2018.
46.
go back to reference H.-L. Li, J. Li, and Z. Xin. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Communications in Mathematical Physics, 281(2):401, May 2008. MathSciNetMATHCrossRef H.-L. Li, J. Li, and Z. Xin. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. Communications in Mathematical Physics, 281(2):401, May 2008. MathSciNetMATHCrossRef
47.
go back to reference Z. Li. Effectual leadership in flocks with hierarchy and individual preference. Discrete Contin. Dyn. Syst., 34(9):3683–3702, 2014. MathSciNetMATHCrossRef Z. Li. Effectual leadership in flocks with hierarchy and individual preference. Discrete Contin. Dyn. Syst., 34(9):3683–3702, 2014. MathSciNetMATHCrossRef
48.
go back to reference V. Loreto and L. Steels. Social dynamics: Emergence of language. Nature Physics, 3:758–760, 2007. CrossRef V. Loreto and L. Steels. Social dynamics: Emergence of language. Nature Physics, 3:758–760, 2007. CrossRef
49.
go back to reference A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. [2013 reprint of the 1995 original] [MR1329547]. A. Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995. [2013 reprint of the 1995 original] [MR1329547].
50.
go back to reference I. Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete Contin. Dyn. Syst., 38(10):5245–5260, 2018. MathSciNetMATHCrossRef I. Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete Contin. Dyn. Syst., 38(10):5245–5260, 2018. MathSciNetMATHCrossRef
51.
go back to reference A. Mellet and A. Vasseur. On the barotropic compressible Navier–Stokes equations. Communications in Partial Differential Equations, 32(3):431–452, 2007. MathSciNetMATHCrossRef A. Mellet and A. Vasseur. On the barotropic compressible Navier–Stokes equations. Communications in Partial Differential Equations, 32(3):431–452, 2007. MathSciNetMATHCrossRef
52.
go back to reference C. Miao and G. Wu. Global well-posedness of the critical Burgers equation in critical Besov spaces. J. Differential Equations, 247(6):1673–1693, 2009. MathSciNetMATHCrossRef C. Miao and G. Wu. Global well-posedness of the critical Burgers equation in critical Besov spaces. J. Differential Equations, 247(6):1673–1693, 2009. MathSciNetMATHCrossRef
53.
go back to reference S. Motsch and E. Tadmor. A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys., 144(5):923–947, 2011. MathSciNetMATHCrossRef S. Motsch and E. Tadmor. A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys., 144(5):923–947, 2011. MathSciNetMATHCrossRef
54.
go back to reference P. B. Mucha and J. Peszek. The Cucker-Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness. Arch. Ration. Mech. Anal., 227(1):273–308, 2018. MathSciNetMATHCrossRef P. B. Mucha and J. Peszek. The Cucker-Smale equation: singular communication weight, measure-valued solutions and weak-atomic uniqueness. Arch. Ration. Mech. Anal., 227(1):273–308, 2018. MathSciNetMATHCrossRef
55.
go back to reference P. B. Mucha, J. Peszek, and M. Pokorný. Flocking particles in a non-Newtonian shear thickening fluid. Nonlinearity, 31(6):2703–2725, 2018. MathSciNetMATHCrossRef P. B. Mucha, J. Peszek, and M. Pokorný. Flocking particles in a non-Newtonian shear thickening fluid. Nonlinearity, 31(6):2703–2725, 2018. MathSciNetMATHCrossRef
57.
go back to reference J. Park, H. J. Kim, and S.-Y. Ha. Cucker-Smale flocking with inter-particle bonding forces. IEEE Trans. Automat. Control, 55(11):2617–2623, 2010. MathSciNetMATHCrossRef J. Park, H. J. Kim, and S.-Y. Ha. Cucker-Smale flocking with inter-particle bonding forces. IEEE Trans. Automat. Control, 55(11):2617–2623, 2010. MathSciNetMATHCrossRef
58.
go back to reference L. Perea, P. Elosegui, and G. Gomez. Extension of the Cucker-Smale control law to space flight formations. Journal of Guidance, Control, and Dynamics, 32(2):527–537, 2009. CrossRef L. Perea, P. Elosegui, and G. Gomez. Extension of the Cucker-Smale control law to space flight formations. Journal of Guidance, Control, and Dynamics, 32(2):527–537, 2009. CrossRef
59.
go back to reference J. Peszek. Existence of piecewise weak solutions of a discrete Cucker–Smale’s flocking model with a singular communication weight. J. Differential Equations, 257(8):2900–2925, 2014. MathSciNetMATHCrossRef J. Peszek. Existence of piecewise weak solutions of a discrete Cucker–Smale’s flocking model with a singular communication weight. J. Differential Equations, 257(8):2900–2925, 2014. MathSciNetMATHCrossRef
60.
61.
go back to reference D. Poyato and J. Soler. Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models. Math. Models Methods Appl. Sci., 27(6):1089–1152, 2017. MathSciNetMATHCrossRef D. Poyato and J. Soler. Euler-type equations and commutators in singular and hyperbolic limits of kinetic Cucker-Smale models. Math. Models Methods Appl. Sci., 27(6):1089–1152, 2017. MathSciNetMATHCrossRef
63.
go back to reference R. Shvydkoy and E. Tadmor. Eulerian dynamics with a commutator forcing II: flocking. Disc. and Cont. Dyn. Sys., 37(11):5503–5520, 2017. MathSciNetMATHCrossRef R. Shvydkoy and E. Tadmor. Eulerian dynamics with a commutator forcing II: flocking. Disc. and Cont. Dyn. Sys., 37(11):5503–5520, 2017. MathSciNetMATHCrossRef
64.
go back to reference R. Shvydkoy. Global existence and stability of nearly aligned flocks. arXiv:1802.08926, 2018. R. Shvydkoy. Global existence and stability of nearly aligned flocks. arXiv:1802.08926, 2018.
65.
go back to reference R. Shvydkoy and E. Tadmor. Eulerian dynamics with a commutator forcing. Transactions of Mathematics and Its Applications, 1(1):tnx001, 2017. R. Shvydkoy and E. Tadmor. Eulerian dynamics with a commutator forcing. Transactions of Mathematics and Its Applications, 1(1):tnx001, 2017.
66.
go back to reference R. Shvydkoy and E. Tadmor. Eulerian dynamics with a commutator forcing III. Fractional diffusion of order 0 <  α < 1. Physica D: Nonlinear Phenomena, 376–377:131–137, 2018. Special Issue: Nonlinear Partial Differential Equations in Mathematical Fluid Dynamics. R. Shvydkoy and E. Tadmor. Eulerian dynamics with a commutator forcing III. Fractional diffusion of order 0 <  α < 1. Physica D: Nonlinear Phenomena, 376–377:131–137, 2018. Special Issue: Nonlinear Partial Differential Equations in Mathematical Fluid Dynamics.
67.
go back to reference R. Shvydkoy and E. Tadmor. Topological models for emergent dynamics with short-range interactions. arXiv:1806.01371, 2018. R. Shvydkoy and E. Tadmor. Topological models for emergent dynamics with short-range interactions. arXiv:1806.01371, 2018.
68.
go back to reference L. Silvestre. Hölder estimates for advection fractional-diffusion equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11(4):843–855, 2012. MathSciNetMATH L. Silvestre. Hölder estimates for advection fractional-diffusion equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11(4):843–855, 2012. MathSciNetMATH
69.
go back to reference H. Spohn. Large scale dynamics of interacting particles. Springer-Verlag, Berlin and Heidelberg, 1991. H. Spohn. Large scale dynamics of interacting particles. Springer-Verlag, Berlin and Heidelberg, 1991.
70.
go back to reference E. Tadmor and C. Tan. Critical thresholds in flocking hydrodynamics with non-local alignment. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372(2028):20130401, 22, 2014. MathSciNetMATHCrossRef E. Tadmor and C. Tan. Critical thresholds in flocking hydrodynamics with non-local alignment. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372(2028):20130401, 22, 2014. MathSciNetMATHCrossRef
71.
72.
go back to reference J. Vazquez. The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. Oxford University Press, 2007. MATH J. Vazquez. The Porous Medium Equation: Mathematical Theory. Oxford Mathematical Monographs. Oxford University Press, 2007. MATH
73.
go back to reference T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Schochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226–9, 1995. MathSciNetCrossRef T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Schochet. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett., 75:1226–9, 1995. MathSciNetCrossRef
74.
go back to reference C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new. C. Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.
75.
go back to reference T. Yang and H. Zhao. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J. Differential Equations, 184(1):163–184, 2002. MathSciNetMATHCrossRef T. Yang and H. Zhao. A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity. J. Differential Equations, 184(1):163–184, 2002. MathSciNetMATHCrossRef
Metadata
Title
Singular Cucker–Smale Dynamics
Authors
Piotr Minakowski
Piotr B. Mucha
Jan Peszek
Ewelina Zatorska
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-20297-2_7

Premium Partners